Tsuyoshi Hirajima

Learn More
The extremely acidophilic, Fe(III)-reducing heterotrophic bacterium Acidocella aromatica strain PFBC was tested for its potential utility in bioreduction of highly toxic heavy metal, hexavalent chromium, Cr(VI). During its aerobic growth on fructose at pH 2.5, 20 µM Cr(VI) was readily reduced to Cr(III), achieving the final Cr(VI) concentration of 0.4 µM(More)
The adhesion behavior of Ferroplasma acidiphilum archaeon to pyrite mineral was investigated experimentally and theoretically. F. acidiphilum showed high affinity to adhere to pyrite surface at acidic regions, however low affinity was observed at neutral and alkaline regions. The microbe-mineral adhesion was assessed by the extended DLVO theory. Hamaker(More)
Hydrocalumite (Ca-Al-layered double hydroxide (LDH)) was prepared and applied for the removal of borate. The properties of Ca-Al-LDH calcined at different temperatures were diverse, which affected the sorption density and mechanism of boron species. The sorption density increased with increase in calcined temperature and the sample calcined at 900°C(More)
To obtain basic information on how microbial cells absorb cadmium from aqueous solution, we examined cadmium absorption in various micro-organisms. Of 51 micro-organism strains tested, we found that some Gram-positive bacteria, such as, Arthrobacter nicotianae and Bacillus subtilis, and some actinomycetes, such as, Streptomyces flavoviridis and S. levoris(More)
The adhesion of Escherichia coli onto quartz, hematite and corundum was experimentally investigated. A strain of E. coli was used that had the genes for expressing protein for silica precipitation. The maximum cell adhesion was observed at pH <4.3 for quartz and at pH 4.5-8.5 for corundum. For hematite, cell adhesion remained low at all pH values. The(More)
Effective immobilization of boron in groundwater is a major challenge. Permeable reactive barrier (PRB) column tests for removal of borate have been investigated using MgO agglomerates as the primary reactive material over 40 weeks. Additionally, saw dust was also blended with MgO agglomerates to facilitate for borate removal in this system. Boron(More)
The effect of calcination temperature during production of magnesium oxide-rich phases from MgCO(3) on the sorption of F(-) ions in the aqueous phase has been investigated. Magnesium oxide-rich phases were formed by calcination at over 873 K for 1h. Higher calcination temperatures produced more crystalline MgO with smaller specific surface area and provided(More)
Microbial transformations, a primary pathway for the Mn oxides formation in nature, provide potential for material-oriented researchers to fabricate new materials. Using Mn oxidizing fungus Paraconiothyrium sp. WL-2 as a bio-oxidizer as well as a bio-template, a special lithium ion sieve with microtube morphology was prepared through a solid-state(More)