Tsutomu Yoshihara

Learn More
The conventional SRAMs, namely four-transistor SRAM (4T) and six-transistor SRAM (6T), suffered from the external noise, because they have direct paths through bit-line(BL) to their storage nodes. This paper proposes seven-transistor (7T) SRAM which has no direct path through BL to the data storage nodes and has higher endurance against external noise. The(More)
This paper presents a Processing Engine (PE) which is used in Low Density Parity Codec (LDPC) application with a novel charge-recovery logic called pseudo-NMOS boost logic (pNBL), to achieve high-speed and low power dissipation. pNBL is a high-overdriven, low area consuming charge recovery logic, which belongs to boost logic family. Proposed Processing(More)
A charge sharing clock scheme is proposed to feed a 5-stage double charge pump circuit. By reusing the charges in charging or discharging the parasitic capacitance during the pumping process, dynamic power loss is able to be reduced by nearly a half. Under 1V supply, simulation results show a maximum 10% efficiency increase, and the ripple noise is also(More)
A charge-recycling circuit and system that reuses the energy between two or more stacked CPUs is proposed in order to double the life of a battery. In this architecture, CPUs are divided into upper and lower load groups, and electrical charges are shared among the stacked CPUs and a tank capacitor. Charges are temporarily stored in the tank capacitor and(More)
A 4-phase cross-coupled charge pump with charge sharing clock scheme is proposed in this paper. Four phase clock is utilized to prevent the reverse leakage current. A charge sharing clock control circuit is constructed, and the consumption in charging or discharging the bottom plate parasitic capacitance of the boost capacitors is reduced by half. The(More)
A double charge pump circuit with triple charge sharing clock scheme is described. T he proposed charge sharing clock generator is able to recover nearly two-thirds of the charge from the parasitics charging, in which way the dynamic power loss in the pumping process is reduced to almost one-third. To preserve the overlapping period of the four-phase clock(More)