Learn More
A fluorescent reagent, N-(1-pyrenyl)iodoacetamide, was conjugated to rabbit skeletal muscle actin at the site of the most reactive sulfhydryl group, and fluorescence characteristics (excitation and emission spectra, quantum yields, lifetimes) of the conjugate were investigated. Associated with polymerization of labelled G-actin, the fluorescence intensity(More)
Invertebrate phototransduction uses an inositol-1,4,5-trisphosphate signalling cascade in which photoactivated rhodopsin stimulates a G(q)-type G protein, that is, a class of G protein that stimulates membrane-bound phospholipase Cbeta. The same cascade is used by many G-protein-coupled receptors, indicating that invertebrate rhodopsin is a prototypical(More)
Bacteriorhodopsin, the sole membrane protein of the purple membrane of Halobacterium salinarum, functions as a light-driven proton pump. A 3-D crystal of bacteriorhodopsin, which was prepared by the membrane fusion method, was used to investigate structural changes in the primary photoreaction. It was observed that when a frozen crystal was exposed to a low(More)
The single-photoelectron counting technique was used for measurement of the fluorescence decay kinetics of N-(1-pyrene)maleimide conjugated to the fast reactive cysteine of actin. The fluorescence decay curve of the labelled G-actin could not be described by a single-exponential function but by a double-exponential function. Polymerization of actin was(More)
For structural investigation of the L intermediate of bacteriorhodopsin, a 3D crystal belonging to the space group P622 was illuminated with green light at 160 K and subsequently with red light at 100 K. This yielded a approximately 1:4 mixture of the L intermediate and the ground-state. Diffraction data from such crystals were collected using a low flux of(More)
Bacteriorhodopsin, a light-driven proton pump found in the purple membrane of Halobacterium salinarum, exhibits purple at neutral pH but its color is sensitive to pH. Here, structures are reported for an acid blue form and an alkaline purple form of wild-type bacteriorhodopsin. When the P622 crystal prepared at pH 5.2 was acidified with sulfuric acid, its(More)
Structural changes in the proton pumping cycle of wild-type bacteriorhodopsin were investigated by using a 3D crystal (space group P622)prepared by the membrane fusion method. Protein-protein contacts in the crystal elongate the lifetime of the M intermediate by a factor of approximately 100,allowing high levels of the M intermediate to accumulate under(More)
Archaerhodopsin-2 (aR2), a retinal protein-carotenoid complex found in the claret membrane of Halorubrum sp. aus-2, functions as a light-driven proton pump. In this study, the membrane fusion method was utilized to prepare trigonal P321 crystals (a=b=98.2 A, c=56.2 A) and hexagonal P6(3) crystals (a=b=108.8 A, c=220.7 A). The trigonal crystal is made up of(More)
The light-driven chloride pump halorhodopsin from Natronomonas pharaonis (phR) crystallised into the monoclinic space group C2, with a phR trimer per the asymmetric unit. Diffraction data at 2.0-A resolution showed that the carotenoid bacterioruberin binds to crevices between adjacent protein subunits in the trimeric assembly. Besides seven transmembrane(More)