Learn More
Bioethanol production from xylose is important for utilization of lignocellulosic biomass as raw materials. The research on yeast conversion of xylose to ethanol has been intensively studied especially for genetically engineered Saccharomyces cerevisiae during the last 20 years. S. cerevisiae, which is a very safe microorganism that plays a traditional and(More)
The recombinant industrial Saccharomyces cerevisiae strain MA-R5 was engineered to express NADP(+)-dependent xylitol dehydrogenase using the flocculent yeast strain IR-2, which has high xylulose-fermenting ability, and both xylose consumption and ethanol production remarkably increased. Furthermore, the MA-R5 strain produced the highest ethanol yield (0.48(More)
Pichia stipitis NAD(+)-dependent xylitol dehydrogenase (XDH), a medium-chain dehydrogenase/reductase, is one of the key enzymes in ethanol fermentation from xylose. For the construction of an efficient biomass-ethanol conversion system, we focused on the two areas of XDH, 1) change of coenzyme specificity from NAD(+) to NADP(+) and 2) thermostabilization by(More)
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC, catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The(More)
Efficient conversion of xylose to ethanol is an essential factor for commercialization of lignocellulosic ethanol. To minimize production of xylitol, a major by-product in xylose metabolism and concomitantly improve ethanol production, Saccharomyces cerevisiae D452-2 was engineered to overexpress NADH-preferable xylose reductase mutant (XR(MUT)) and(More)
A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD(+)-dependent XDH. To reduce xylitol(More)
Genes involved in lipid accumulation were identified in Saccharomyces cerevisiae using transposon insertion mutagenesis. Five ORFs, such as SNF2, IRA2, PRE9, PHO90, and SPT21 were found from the analysis of the insertion sites in transposon insertion mutants with higher lipid content. Since these ORFs are not directly involved in storage lipid biosynthesis,(More)
We focused on the effects of a mutation of xylose reductase from Pichia stipitis (PsXR) on xylose-to-ethanol fermentation using recombinant Saccharomyces cerevisiae transformed with PsXR and PsXDH (xylitol dehydrogenase from P. stipitis) genes. Based on inherent NADH-preferring XR and several site-directed mutagenetic studies using other aldo-keto reductase(More)
Azospirillum brasiliense possesses an alternative pathway of L-arabinose metabolism, different from the known bacterial and fungal pathways. In the preceding articles, we identified and characterized L-arabinose-1-dehydrogenase and alpha-ketoglutaric semialdehyde dehydrogenase, which catalyzes the first and final reaction steps in this pathway, respectively(More)
Improvement of a gene product by introducing mutations into the gene is usually applied for improving structural genes. In this study the procedure was applied for generation and improvement of a genetic signal to drive gene expression. By adding various concentrations of Mn2+ to the PCR reaction mixture, mutations were introduced into a DNA fragment at(More)