Learn More
PURPOSE To evaluate the efficiency and safety of AAV-mediated gene delivery of a normal human ND4 complex I subunit in the mouse visual system. METHODS A nuclear encoded human ND4 subunit fused to the ATPc mitochondrial targeting sequence and FLAG epitope were packaged in AAV2 capsids that were injected into the right eyes of mice. AAV-GFP was injected(More)
PURPOSE Although mutated G11778A NADH ubiquinone oxidoreductase subunit 4 (ND4) mitochondrial DNA (mtDNA) is firmly linked to the blindness of Leber hereditary optic neuropathy (LHON), a bona fide animal model system with mutated mtDNA complex I subunits that would enable probing the pathogenesis of optic neuropathy and testing potential avenues for therapy(More)
PURPOSE To characterize differences in retinal ganglion cell (RGC) function in mouse strains relevant to disease models. C57BL/6J (B6) and DBA/2J (D2) are the two most common mouse strains; D2 has two mutated genes, tyrosinase-related protein 1 (Tyrp1) and glycoprotein non-metastatic melanoma protein B (Gpnmb), causing iris disease and intraocular pressure(More)
PURPOSE To characterize postnatal changes in eye size in glaucomatous DBA/2J (D2) mice and in nonglaucomatous C57BL/6J mice (B6) in vivo by means of whole-eye optical coherence tomography (OCT). METHODS D2 (n = 32) and B6 (n = 36) mice were tested between 2 and 20 months of age in eight age bins. A custom time-domain OCT system with a center wavelength of(More)
To address mitochondrial dysfunction that mediates irreversible visual loss and neurodegeneration of the optic nerve in the experimental autoimmune encephalomyelitis (EAE) animal model of multiple sclerosis (MS), mice sensitized for EAE were vitreally injected with self-complementary adenoassociated virus (scAAV) containing the NADH-dehydrogenase type-2(More)
PURPOSE To evaluate the ND4 transgenic mouse model of multiple sclerosis using noninvasive methods. METHODS Assessment of neurologic/behavioral abnormalities was made using pattern electroretinogram (PERG), magnetic resonance imaging (MRI), optic coherence tomography (OCT), and end point histologic analysis. RESULTS Electrophysiologic (PERG) recordings(More)
PURPOSE We investigated the role of retrograde signaling in the optic nerve on retinal ganglion cell (RGC) electrical responsiveness in the mouse model. METHODS Electrical response of RGC was measured by pattern electroretinogram (PERG) in 43 C57BL/6J mice 4 to 6 months old under ketamine/xylazine anesthesia. PERGs were recorded before and at different(More)
PURPOSE To develop a mouse model of inducible, chronic retinal ganglion cell (RGC) dysfunction not associated with cell death. METHODS Eighteen C57BL/6J mice were longitudinally tested with pattern electroretinogram (PERG) and spectral-domain optical coherence tomography (OCT) before and after aspiration of the contralateral superior colliculus (SC),(More)
Injury to retinal ganglion cell (RGC) axons leads to selective loss of RGCs and vision. Previous studies have shown that exogenous neurotrophic factors promote RGC survival. We investigated the neuroprotective effects of oncostatin M (OSM), a member of the IL-6 family of cytokines, on pattern electroretinogram (PERG) and RGC survival after optic nerve crush(More)
PURPOSE To compare the bioelectric field associated with the pattern electroretinogram (PERG) with that of the flash electroretinogram (FERG) in the mouse. METHODS PERGs and FERGs were recorded from each eye in 32 C57BL/6J mice using corneal silver loops referenced to a subcutaneous needle on the back of the head. PERG stimuli were horizontal gratings of(More)