Learn More
This paper describes the application of electrical impedance tomography (EIT) to demonstrate the multifunctionality of carbon nanocomposite thin films under various types of environmental stimuli. Carbon nanotube (CNT) thin films are fabricated by a layer-by-layer (LbL) technique and mounted with electrodes along their boundaries. The response of the thin(More)
The field of nanotechnology is rapidly maturing into a fertile and interdisciplinary research area from which new sensor and actuator technologies can be conceived. The tools and processes derived from the nanotechnology field have offered engineers the opportunity to design materials in which sensing transduction mechanisms can be intentionally encoded.(More)
A genetic algorithm (GA) combined with a tabu search (TA) has been applied as a minimization method to rake the appropriate associated sites for some biomolecular systems. In our docking procedure, surface complementarity and energetic complementarity of a ligand with its receptor have been considered separately in a two-stage docking method. The first(More)
  • T Hou, X Xu
  • 2001
We present a comprehensive molecular simulation program package, the Peking University Drug Design System (PKUDDS), which runs on personal computers. PKUDDS has been developed mainly for computer-aided drug design using the methods of two-dimensional quantitative structure-activity relationships, three-dimensional quantitative structure-activity(More)
Impact damage, excessive loading, and corrosion have been identified as critical and long-term problems that constantly threaten the integrity and reliability of structural systems (e.g., civil infrastructures, aircrafts, and naval vessels). While a variety of sensing transducers have been proposed for structural health monitoring, most sensors only offer(More)
In recent years, a new class of cementitious composite has been proposed for the design and construction of durable civil structures. Termed engineered cementitious composites (ECC), ECC utilizes a low volume fraction of short fibers (polymer, steel, carbon) within a cementitious matrix resulting in a composite that strain hardens when loaded in tension. By(More)
High-performance fiber reinforced cementitious composites (HPFRCC) have the potential to provide civil structures with high ductility and damage tolerance. Low-cost wireless sensing networks are another emerging area that can monitor civil structures for signs of deterioration and damage. Developed in isolation of one another, these two promising(More)
Cement-based materials are widely used in the construction of civil infrastructure systems. However, normal wear-and-tear and extreme loading can result in the damage and deterioration of such important civil structures. In this study, a novel approach to the detection of cracks in fiber reinforced cementitious composites (FRCC) is proposed. The approach is(More)
Concrete bridge piers are a common structural element employed in the design of bridges and elevated roadways. In order to ensure adequate behavior under earthquake-induced displacements, extensive reinforcement detailing in the form of closely spaced ties or spirals is necessary, leading to congestion problems and difficulties during concrete casting.(More)