Tsukasa Gotow

Learn More
Simple photoreceptors, namely photoresponsive neurons without microvilli and/or cilia have long been known in the central ganglion of crayfish, Aplysia, Onchidium and Helix. Recently, similar simple photoreceptors, ipRGCs were discovered in the mammalian retinas. A characteristic common to all of their photoreceptor potentials shows a slow kinetics and(More)
Simple photoreceptors, namely intrinsically light-sensitive neurons without microvilli and/or cilia, have long been known to exist in the central ganglia of crayfish, Aplysia, Onchidium, and Helix. These simple photoreceptors are not only first-order photosensory cells, but also second-order neurons (interneurons), relaying several kinds of sensory synaptic(More)
Simple photoreceptors, namely photoresponsive neurons, designated as A-P-1, Es-1, Ip-2 and Ip-1, exist in the sea slug Onchidium ganglion. Previous works has shown that, of these, Ip-2 and Ip-1 respond to light with a hyperpolarizing receptor potential, caused by the opening of light-dependent, cGMP-gated K+ channels, whereas A-P-1 and Es-1 are depolarized(More)
Light-dependent K(+) channels underlying a hyperpolarizing response of one extraocular (simple) photoreceptor, Ip-2 cell, in the marine mollusc Onchidium ganglion were examined using cell-attached and inside-out patch-clamp techniques. A previous report (Gotow, T., T. Nishi, and H. Kijima. 1994. Brain Res. 662:268-272) showed that a depolarizing response of(More)
  • 1