Tsubasa S. Matsui

Learn More
Contact guidance is a cellular phenomenon observed during wound healing and developmental patterning, in which adherent cells align in the same direction due to physical cues. Despite numerous studies, the molecular mechanism underlying the consistent cell orientation is poorly understood. Here we fabricated microgrooves with a pitch of submicrons to study(More)
It remains unclear how the subcellular positions and sizes of individual focal adhesions (FAs) are determined in stationary cells. The elucidation of spatial regulation mechanisms is important for accurate understanding of the cellular response to mechanical stress. Through a theoretical analysis on previously reported cell behavior, the present study(More)
Surrogate light chains consisting of VpreB (CD179a) and λ5 (CD179b) are expressed in precursor B cells lacking a complete form of immunoglobulin and are thought to act as substitutes for conventional light chains. Upon differentiation to immature and mature B cells, CD179a/b disappear and are replaced with conventional light chains. Thus, these molecules(More)
Stress fibers (SFs), subcellular bundles of actin and myosin filaments, are physically connected at their ends to cell adhesions. The intracellular force transmitted via SFs plays an essential role in cell adhesion regulation and downstream signaling. However, biophysical properties intrinsic to individual SFs remain poorly understood partly because SFs are(More)
Stress fibers (SFs) composed of nonmuscle actin and myosin II play critical roles in various cellular functions such as structural remodeling in response to changes in cell stress or strain. Previous studies report that SFs rapidly disassemble upon loss of tension caused by reduced myosin activity or sudden cell shortening, but the mechanism is unclear.(More)
Dynamic remodelling of actin stress fibres (SFs) allows non-muscle cells to adapt to applied forces such as uniaxial cell shortening. However, the mechanism underlying rapid and selective disassembly of SFs oriented in the direction of shortening remains to be elucidated. Here, we investigated how myosin crossbridge cycling induced by MgATP is associated(More)
Sheets of cells can be used for tissue regenerative medicine. Cell alignment within the sheet is now a key factor in the next generation of this technology. Anisotropic cell sheets without random cell orientations have been conventionally produced with photolithographically, microfabricated substrates using special facilities and equipment. Here we(More)
The micropatterning of cells, which restricts the adhesive regions on the substrate and thus controls cell geometry, is used to study mechanobiology-related cell functions. Plasma lithography is a means of providing such patterns and uses a spatially-selective plasma treatment. Conventional plasma lithography employs a positionally-fixed mask with which the(More)
Conventional atomic force microscopy is one of the major techniques to evaluate mechanical properties of cells and subcellular components. The use of a cantilever probe for sample manipulation within the vertical plane often makes absolute positioning of the probe, subject to thermal drift, difficult. In addition, the vertical test is unable to observe(More)
Physical forces play crucial roles in coordinating collective migration of epithelial cells, but details of such force-related phenomena remain unclear partly due to the lack of robust methodologies to probe the underlying force fields. Here we develop a method for fabricating silicone substrates that detect cellular traction forces with a high sensitivity.(More)