Learn More
In this comment, it will be shown that the backpropagation (BP) equations by Wang et al. are not correct. These BP equations were used to tune the parameters of the antecedent type-2 membership functions as well as the consequent part of the interval type-2 fuzzy neural networks (T2FNNs). These incorrect equations would have led to erroneous results, and(More)
In this paper, an observer-based adaptive fuzzy-neural controller for a class of unknown nonlinear dynamical systems is developed. The observer-based output feedback control law and update law to tune on-line the weighting factors of the adaptive fuzzy-neural controller are derived. The total states of the nonlinear system are not assumed to be available(More)
A new design approach for an adaptive fuzzy sliding mode controller (AFSMC) for linear systems with mismatched time-varying uncertainties is presented. The coefficient matrix of the sliding function can be designed to satisfy a sliding coefficient matching condition provided time-varying uncertainties are bounded. With the sliding coefficient matching(More)
This paper proposes a wavelet adaptive backstepping control (WABC) system for a class of second-order nonlinear systems. The WABC comprises a neural backstepping controller and a robust controller. The neural backstepping controller containing a wavelet neural network (WNN) identifier is the principal controller, and the robust controller is designed to(More)
In this paper, we propose the approximate transformable technique, which includes the direct transformation and indirect transformation, to obtain a Chebyshev-Polynomials-Based (CPB) unified model neural networks for feedforward/recurrent neural networks via Chebyshev polynomials approximation. Based on this approximate transformable technique, we have(More)
The paper describes a novel application of the B-spline membership functions (BMF's) and the fuzzy neural network to the function approximation with outliers in training data. According to the robust objective function, we use gradient descent method to derive the new learning rules of the weighting values and BMF's of the fuzzy neural network for robust(More)
In this paper, an intelligent automated lane-keeping system is proposed and implemented on our vehicle platform, i.e., TAIWAN i TS-1. This system challenges the online integrating heterogeneous systems such as a real-time vision system, a lateral controller, in-vehicle sensors, and a steering wheel actuating motor. The implemented vision system detects the(More)
A neural network (NN) adaptive model-based combined lateral and longitudinal vehicle control algorithm for highway applications is presented in this paper. The controller is synthesized using a proportional plus derivative control coupled with an online adaptive neural module that acts as a dynamic compensator to counteract inherent model discrepancies,(More)