Trygve Solstad

Learn More
The medial entorhinal cortex (MEC) is part of the brain's circuit for dynamic representation of self-location. The metric of this representation is provided by grid cells, cells with spatial firing fields that tile environments in a periodic hexagonal pattern. Limited anatomical sampling has obscured whether the grid system operates as a unified system or a(More)
We report the existence of an entorhinal cell type that fires when an animal is close to the borders of the proximal environment. The orientation-specific edge-apposing activity of these "border cells" is maintained when the environment is stretched and during testing in enclosures of different size and shape in different rooms. Border cells are relatively(More)
Grid cells are topographically organized in the sense that, within the dorsal part of the medial entorhinal cortex, the scale of the grid increases systematically with anatomical distance from the dorsal border of this brain area. The ventral limit of the spatial map is currently not known. To determine if the grid map extends into the intermediate and(More)
Anatomical connectivity and recent neurophysiological results imply that grid cells in the medial entorhinal cortex are the principal cortical inputs to place cells in the hippocampus. The authors propose a model in which place fields of hippocampal pyramidal cells are formed by linear summation of appropriately weighted inputs from entorhinal grid cells.(More)
To determine how spatial scale is represented in the pyramidal cell population of the hippocampus, we recorded neural activity at multiple longitudinal levels of this brain area while rats ran back and forth on an 18-meter-long linear track. CA3 cells had well-defined place fields at all levels. The scale of representation increased almost linearly from <1(More)
Allocentric space is mapped by a widespread brain circuit of functionally specialized cell types located in interconnected subregions of the hippocampal-parahippocampal cortices. Little is known about the neural architectures required to express this variety of firing patterns. In rats, we found that one of the cell types, the grid cell, was abundant not(More)
Episodic-like memory is thought to be supported by attractor dynamics in the hippocampus. A possible neural substrate for this memory mechanism is rate remapping, in which the spatial map of place cells encodes contextual information through firing rate variability. To test whether memories are stored as multimodal attractors in populations of place cells,(More)
The hippocampus is a neural structure strongly implicated in long term episodic memory. Hippocampal anatomy can be well described by implementations of recurrent neural networks (RNNs). Built on the dynamics of systems with a simple fixed point attractor structure, these models have successfully described many aspects of memory storage and recall. In(More)
  • 1