Learn More
PURPOSE Generation of a reactive stroma environment occurs in many human cancers and is likely to promote tumorigenesis. However, reactive stroma in human prostate cancer has not been defined. We examined stromal cell phenotype and expression of extracellular matrix components in an effort to define the reactive stroma environment and to determine its(More)
Reactive stroma has been reported in many cancers, including breast, colon,and prostate. Although changes in stromal cell phenotype and extracellular matrix have been reported, specific mechanisms of how reactive stroma affects tumor progression are not understood. To address the role of stromal cells in differential regulation of tumor incidence, growth(More)
BACKGROUND Pancreatic stellate cells (PSCs) are key mediators of the desmoplastic reaction that characterizes pancreatic adenocarcinoma. We sought to isolate and characterize tumor-derived pancreatic stellate (TDPS) cells to further understand how these stromal cells influence pancreatic cancer behavior. METHODS We established a stable line of(More)
OBJECTIVES Numerous inflammatory diseases display elevated interleukin (IL)-8, and most are associated with a reactive stroma. IL-8 expression is also elevated in benign prostatic hyperplasia (BPH), yet little is known about reactive stroma in BPH. Whether a reactive stroma response exists in BPH, whether this correlates with elevated IL-8, and whether IL-8(More)
Our previous studies have characterized mesenchyme-derived proteins to identify biologically active proteins and novel markers for stromal cell paracrine action relative to stromal-epithelial interactions. Previous reports have characterized properties of a growth inhibitory activity (to bladder and prostatic epithelial cells), secreted by U4F fetal rat(More)
Our previous studies have defined reactive stroma in human prostate cancer and have developed the differential reactive stroma (DRS) xenograft model to evaluate mechanisms of how reactive stroma promotes carcinoma tumorigenesis. Analysis of several normal human prostate stromal cell lines in the DRS model showed that some rapidly promoted LNCaP prostate(More)
We have shown previously that reactive stroma promotes angiogenesis and growth of LNCaP human prostate tumors in the differential reactive stroma xenograft model. Regulators of reactive stroma are not known, but transforming growth factor (TGF)-beta1 is a likely candidate. Three-way differential reactive stroma tumors were generated in the presence of(More)
Previous studies have identified a M(r) 12,000 protein in rat prostatic stromal cell-conditioned medium with growth stimulatory activity to human prostatic carcinoma cells as a direct match with beta 2-microglobulin (beta 2-m). The present study was conducted to characterize the activities of human beta 2-m directly, using commercially available, purified(More)
Stromal-epithelial interactions in the prostate gland are dependent on androgen regulation of prostate stromal cells, yet little is known about androgen action in these cell types. Recent reports have demonstrated that androgen-regulated gene transcription can be stimulated or inhibited by certain growth factors, indicating cross-talk mechanisms. To address(More)
We previously reported the purification of ps20 (Rowley, D. R., Dang, T. D., Larsen, M., Gerdes, M. J., McBride, L., and Lu, B. (1995) J. Biol. Chem. 270, 22058-22065), a urogenital sinus mesenchymal cell secreted protein having growth-inhibitory properties. We report here cloning of the 1.03-kilobase rat ps20 cDNA clone from the PS-1 (adult rat prostate(More)