Learn More
Memories are thought to be due to lasting synaptic modifications in the brain. The search for memory traces has relied predominantly on determining regions that are necessary for the process. However, a more informative approach is to define the smallest sufficient set of brain structures. The rutabaga adenylyl cyclase, an enzyme that is ubiquitously(More)
Most attempts to localize physical correlates of memory in the central nervous system (CNS) rely on ablation techniques. This approach has the limitation of defining just one of an unknown number of structures necessary for memory formation. We have used the Drosophila rutabaga type I Ca(2+)/CaM-dependent adenylyl cyclase (AC) gene to determine in which CNS(More)
Biogenic amines, such as serotonin and dopamine, can be important in reinforcing associative learning. This function is evident as changes in memory performance with manipulation of either of these signals. In the insects, evidence begins to argue for a common role of dopamine in negatively reinforced memory. In contrast, the role of the serotonergic system(More)
BACKGROUND In mammals and humans, noradrenaline is a key modulator of aggression. Octopamine, a closely related biogenic amine, has been proposed to have a similar function in arthropods. However, the effect of octopamine on aggressive behavior is little understood. RESULTS An automated video analysis of aggression in male Drosophila has been developed,(More)
We examined the roles of the Drosophila Gq alpha proteins (DGq) in the phototransduction pathway. The DGq proteins immunolocalized to the ocelli and all eight retinular photoreceptor cell rhabdomeres. An affinity-purified anti-DGq alpha immunoglobulin blocked the light-dependent GTP hydrolysis activity associated with Drosophila head membranes in vitro,(More)
Memory loss occurs by diverse mechanisms, as different time constants of performance decrement and sensitivities to experimental manipulations suggest. While the phenomena of memory decay, interference, and extinction are well established behaviorally, little is known about them at the circuit or molecular level. In Drosophila, odorant memories lasting up(More)
Heterotrimeric G-proteins relay signals between membrane-bound receptors and downstream effectors. Little is known, however, about the regulation of Galpha subunit localization within the natural endogenous environment of a specialized signaling cell. Here we show, using live Drosophila flies, that light causes massive and reversible translocation of the(More)
A variety of rod opsin mutations result in autosomal dominant retinitis pigmentosa and congenital night blindness in humans. One subset of these mutations encodes constitutively active forms of the rod opsin protein. Some of these dominant rod opsin mutant proteins, which desensitize transgenic Xenopus rods, provide an animal model for congenital night(More)
The biogenic amines dopamine, octopamine, and serotonin are critical in establishing normal memories. A common view for the amines in insect memory performance has emerged in which dopamine and octopamine are largely responsible for aversive and appetitive memories. Examination of the function of serotonin begins to challenge the notion of one amine type(More)
The biogenic amines play a critical role in establishing memories. In the insects, octopamine, dopamine, and serotonin have key functions in memory formation. For Drosophila, octopamine is necessary and sufficient for appetitive olfactory memory formation. Whether octopamine plays a general role in reinforcing memories in the fly is not known. Place(More)