Trisha N Davis

Learn More
There are about 800 genes in Saccharomyces cerevisiae whose transcription is cell-cycle regulated. Some of these form clusters of co-regulated genes. The 'CLB2' cluster contains 33 genes whose transcription peaks early in mitosis, including CLB1, CLB2, SWI5, ACE2, CDC5, CDC20 and other genes important for mitosis. Here we find that the genes in this cluster(More)
Kinetochores couple chromosomes to the assembling and disassembling tips of microtubules, a dynamic behavior that is fundamental to mitosis in all eukaryotes but poorly understood. Genetic, biochemical, and structural studies implicate the Ndc80 complex as a direct point of contact between kinetochores and microtubules, but these approaches provide only a(More)
Two independent methods identified the spindle pole body component Nuf1p/Spc110p as the essential mitotic target of calmodulin. Extragenic suppressors of cmd1-1 were isolated and found to define three loci, XCM1, XCM2, and XCM3 (extragenic suppressor of cmd1-1). The gene encoding a dominant suppressor allele of XCM1 was cloned. On the basis of DNA sequence(More)
Calmodulin is a small Ca(2+)-binding protein proposed to act as the intracellular Ca2+ receptor that translates Ca2+ signals into cellular responses. We have constructed mutant yeast calmodulins in which the Ca(2+)-binding loops have been altered by site-directed mutagenesis. Each of the mutant proteins has a dramatically reduced affinity for Ca2+; one does(More)
In Saccharomyces cerevisiae, the unconventional myosin Myo2p is of fundamental importance in polarized growth. We explore the role of the neck region and its associated light chains in regulating Myo2p function. Surprisingly, we find that precise deletion of the six IQ sites in the neck region results in a myosin, Myo2-Delta6IQp, that can support the growth(More)
Many genes required for cell polarity development in budding yeast have been identified and arranged into a functional hierarchy. Core elements of the hierarchy are widely conserved, underlying cell polarity development in diverse eukaryotes. To enumerate more fully the protein-protein interactions that mediate cell polarity development, and to uncover(More)
Microtubules are nucleated in vivo by gamma-tubulin complexes. The 300-kDa gamma-tubulin small complex (gamma-TuSC), consisting of two molecules of gamma-tubulin and one copy each of the accessory proteins Spc97 and Spc98, is the conserved, essential core of the microtubule nucleating machinery. In metazoa multiple gamma-TuSCs assemble with other proteins(More)
In the budding yeast Saccharomyces cerevisiae, the calmodulin-binding protein Spc110p/Nuf1p facilitates mitotic spindle formation from the fungal centrosome or spindle pole body (SPB). The human Spc110p orthologue kendrin is a centrosomal, calmodulin-binding pericentrin isoform that is specifically overexpressed in carcinoma cells. Here we establish an(More)
Previously we demonstrated that calmodulin binds to the carboxy terminus of Spc110p, an essential component of the Saccharomyces cerevisiae spindle pole body (SPB), and that this interaction is required for chromosome segregation. Immunoelectron microscopy presented here shows that calmodulin and thus the carboxy terminus of Spc110p localize to the central(More)
The coupling of kinetochores to dynamic spindle microtubules is crucial for chromosome positioning and segregation, error correction, and cell cycle progression. How these fundamental attachments are made and persist under tensile forces from the spindle remain important questions. As microtubule-binding elements, the budding yeast Ndc80 and Dam1(More)