Learn More
BACKGROUND Australia's dinosaurian fossil record is exceptionally poor compared to that of other similar-sized continents. Most taxa are known from fragmentary isolated remains with uncertain taxonomic and phylogenetic placement. A better understanding of the Australian dinosaurian record is crucial to understanding the global palaeobiogeography of(More)
A population survey of 258 unrelated white British subjects showed a polymorphism for the 4-oxidation of debrisoquine. "Extensive metabolisers" (EM) and "poor metabolisers" (PM) are recognisable, 8.9% of the population being PM. Nine pedigrees ascertained through PM probands show that the PM phenotype is an autosomal Mendelian recessive character. The EM(More)
1. The metabolic oxidation of debrisoquine has been studied in a group of 123 Nigerian volunteers. 2. All subjects excreted unchanged drug together with five oxidation products, namely, 4-, 5-, 6-, 7- and 8-hydroxy-debrisoquine. 3. The 4-hydroxylation reaction exhibits polymorphism; ten subjects were defective in their ability to effect this reaction. 4.(More)
The oxidative O-de-ethylation and aromatic 2-hydroxylation of phenacetin have been investigated in panels of extensive (EM, n = 13) and poor (PM, n = 10) metabolizers of debrisoquine. The EM group excreted in the urine significantly more paracetamol (EM: 40.8 +/- 14.9% dose/0-8 h; PM: 29.2 +/- 8.7% dose/0-8 h, 2P less than 0.05) and significantly less(More)
Eight volunteers previously phenotyped for their ability to hydroxylate debrisoquine (four extensive metabolisers (EM), four poor metabolisers (PM) were investigated for their metabolic handling of guanoxan and phenacetin. All three drugs are oxidised at carbon centres. Oxidative dealkylation of phenacetin was determined by measuring the rate of formation(More)
1 The disposition in urine of debrisoquine and its hydroxylated metabolites has been studied in subjects of the 'extensive metabolizer' (EM; n = 5) and 'poor metabolizer' (PM; n = 5) phenotypes. The 4-hydroxylation of debrisoquine by PM subjects following a 10 mg oral dose was capacity-limited and displayed significant dose-dependency over a range of 1-20(More)
We report new skeletal elements pertaining to the same individual which represents the holotype of Australovenator wintonensis, from the 'Matilda Site' in the Winton Formation (Upper Cretaceous) of western Queensland. The discovery of these new elements means that the hind limb of Australovenator is now the most completely understood hind limb among(More)
New skeletal elements are reported of the holotype specimen Australovenator wintonensis, from the type locality, near Winton, central western Queensland. New elements include left and right humeri, right radius, right radiale, right distal carpal 1, near complete right metacarpal I, left manual phalanx II-1, left manual phalanx II-2, near complete left(More)