Tripathi B. Rajavashisth

Learn More
Toll-like receptors (TLRs) and the downstream adaptor molecule myeloid differentiation factor 88 (MyD88) play an essential role in the innate immune responses. Here, we demonstrate that genetic deficiency of TLR4 or MyD88 is associated with a significant reduction of aortic plaque areas in atherosclerosis-prone apolipoprotein E-deficient mice, despite(More)
BACKGROUND Inflammation is implicated in atherogenesis and plaque disruption. Toll-like receptor 2 (TLR-2) and TLR-4, a human homologue of drosophila Toll, play an important role in the innate and inflammatory signaling responses to microbial agents. To investigate a potential role of these receptors in atherosclerosis, we assessed the expression of TLR-2(More)
In Alzheimer disease (AD), neurons are thought to be subjected to the deleterious cytotoxic effects of activated microglia. We demonstrate that binding of amyloid-beta peptide (Abeta) to neuronal Receptor for Advanced Glycation Endproduct (RAGE), a cell surface receptor for Abeta, induces macrophage-colony stimulating factor (M-CSF) by an oxidant sensitive,(More)
To test the hypothesis that nitric oxide (NO) limits endothelial activation, we treated cytokine-stimulated human saphenous vein endothelial cells with several NO donors and assessed their effects on the inducible expression of vascular cell adhesion molecule-1 (VCAM-1). In a concentration-dependent manner, NO inhibited interleukin (IL)-1 alpha-stimulated(More)
BACKGROUND Matrix metalloproteinases (MMPs) are expressed in atherosclerotic plaques, where in their active form, they may contribute to vascular remodeling and plaque disruption. In this study, we tested the hypothesis that membrane type 1 MMP (MT1-MMP), a novel transmembrane MMP that activates pro-MMP-2 (gelatinase A), is expressed in human(More)
Pathologists have recognized arterial calcification for over a century. Recent years have witnessed a strong resurgence of interest in atherosclerotic plaque calcification because it: 1) can be easily detected noninvasively; 2) closely correlates with the amount of atherosclerotic plaque; 3) serves as a surrogate measure for atherosclerosis, allowing(More)
We investigated whether inflammatory cytokines or oxidized low density lipoproteins (Ox-LDL) present in human atheroma modulate extracellular matrix degradation by inducing membrane type 1-matrix metalloproteinase (MT1-MMP) expression. Cultured human endothelial cells (EC) constitutively expressed MT1-MMP mRNA and protein with enzymatic activity. Tumor(More)
Macrophage-colony stimulating factor (M-CSF) contributes to atherogenesis by regulating macrophage-derived foam cells in atherosclerotic lesions. Here we report that nitric oxide (NO) inhibits the expression of M-CSF in human vascular endothelial cells independent of guanylyl cyclase activation. The induction of M-CSF mRNA expression by either oxidized low(More)
BACKGROUND Macrophages in human atherosclerotic plaques produce a family of matrix metalloproteinases (MMPs), which may influence vascular remodeling and plaque disruption. Because oxidized LDL (ox-LDL) is implicated in many proatherogenic events, we hypothesized that ox-LDL would regulate expression of MMP-9 and tissue inhibitor of metalloproteinase-1(More)
Androgens are important regulators of body composition and promote myogenic differentiation and inhibit adipogenesis of mesenchymal, multipotent cells. Here, we investigated the mechanisms by which androgens induce myogenic differentiation of mesenchymal multipotent cells. Incubation of mesenchymal multipotent C3H 10T1/2 cells with testosterone and(More)