Learn More
Treatment of primary rat epididymal adipocytes or 3T3-L1 adipocytes with various agents which increase cAMP led to the phosphorylation of eukaryotic translation elongation factor-2 (eEF-2). The increase in eEF-2 phosphorylation was a consequence of the activation of eEF-2 kinase (eEF-2K), which is a Ca2+/calmodulin-dependent kinase. eEF-2K was shown to be(More)
The effects of insulin and rapamycin on the phosphorylation of the translation regulator, initiation factor 4E-binding protein 1 (4E-BP1) have been studied in rat fat cells by following changes in the incorporation of 32P from [32P]Pi under steady-state conditions. Both unbound 4E-BP1 and 4E-BP1 bound to eukaryotic initiation factor 4E (eIF4E) were isolated(More)
We have investigated the signalling pathways involved in the stimulation of glycogen and fatty acid synthesis by insulin in rat fat cells using wortmannin, an inhibitor of phosphatidylinositol 3-kinase, and rapamycin, which blocks activation of p70 ribosomal S6 protein kinase (p70S6K). Insulin produced a decrease in the activity of glycogen synthase(More)
Elongation factor-2 kinase (eEF-2K) negatively regulates mRNA translation via the phosphorylation and inactivation of elongation factor-2 (eEF-2). We have shown previously that purified eEF-2K can be phosphorylated in vitro by cAMP-dependent protein kinase (PKA) and that this induces significant Ca(2+)/calmodulin (CaM)-independent eEF-2K activity [Redpath(More)
There is mounting evidence that in fat and other insulin-sensitive cells activation of protein synthesis may involve the dissociation of a protein (4E-BP1) from eukaryotic initiation factor (eIF)-4E thus allowing formation of the eIF-4F complex. This study compares the effects of insulin and epidermal growth factor (EGF) on the phosphorylation of 4E-BP1 in(More)
A number of elongation factor-2 kinase (eEF-2K) mutants were constructed to investigate features of this kinase that may be important in its activity. Typical protein kinases possess a highly conserved lysine residue in subdomain II which follows the GXGXXG motif of subdomain I. Mutation of two lysine residues, K340 and K346, which follow the GXGXXG motif(More)
The pyruvate dehydrogenase complex has a central role in the regulation of mammalian metabolism as it represents the point-of-no-return in the utilization of carbohydrate. This article summarizes our studies into how signalling systems initiated by hormones binding to cell surface receptors can reach the pyruvate dehydrogenase system which is located within(More)
Over short time periods glucose controls insulin biosynthesis predominantly through effects on preexisting mRNA. However, the mechanisms underlying the translational control of insulin synthesis are unknown. The present study was carried out to determine the effect of glucose on the activity and/or phosphorylation status of eukaryotic initiation and(More)
The authors describe a novel method for the quantitation of differential levels of biomolecules using unlabeled samples and protein-binding arrays for assessing differential expression. Traditional affinity arrays, whether in microplates or protein microarrays, suffer from a few common problems-a shortage of characterized antibodies and highly variable(More)
The effects of Mg2+ on the activity of pyruvate dehydrogenase phosphate phosphatase within intact mitochondria prepared from control and insulin-treated rat epididymal adipose tissue was explored by incubating the mitochondria in medium containing the ionophore A23187. The apparent Ka for Mg2+ was approximately halved in the mitochondria derived from(More)