Trevor W Stone

Learn More
In a little more than 10 years, the kynurenine metabolites of tryptophan have emerged from their former position as biochemical curiosities, to occupy a prominent position in research on the causes and treatment of several major CNS disorders. The pathway includes two compounds, quinolinic acid and kynurenic acid, which are remarkably specific in their(More)
The kynurenine pathway is the main pathway for tryptophan metabolism. It generates compounds that can modulate activity at glutamate receptors and possibly nicotinic receptors, in addition to some as-yet-unidentified sites. The pathway is in a unique position to regulate other aspects of the metabolism of tryptophan to neuroactive compounds, and also seems(More)
In just under 20 years the kynurenine family of compounds has developed from a group of obscure metabolites of the essential amino acid tryptophan into a source of intensive research, with postulated roles for quinolinic acid in neurodegenerative disorders, most especially the AIDS-dementia complex and Huntington's disease. One of the kynurenines, kynurenic(More)
Tryptophan is metabolised primarily along the kynurenine pathway, of which two components are now known to have marked effects on neurons in the central nervous system. Quinolinic acid is an agonist at the population of glutamate receptors which are sensitive to N-methyl-D-aspartate (NMDA), and kynurenic acid is an antagonist at several glutamate receptors.(More)
Understanding the neurochemical basis for cognitive function is one of the major goals of neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of psychiatric and neurological disorders. In this review, the focus will be on a biochemical pathway that remains under-recognized in its implications for brain function, even(More)
The kynurenine pathway of tryptophan metabolism accounts for most of the tryptophan that is not committed to protein synthesis and includes compounds active in the nervous and immune systems. Kynurenine acts on the aryl hydrocarbon receptor, affecting the metabolism of xenobiotics and promoting carcinogenesis. Quinolinic acid is an agonist at(More)
In most tissues, including brain, a major proportion of the tryptophan which is not used for protein synthesis is metabolised along the kynurenine pathway. Long regarded as the route by which many mammals generate adequate amounts of the essential co-factor nicotinamide adenine dinucleotide, two components of the pathway are now known to have marked effects(More)
Abnormalities in the kynurenine pathway may play a role in Huntington's disease (HD). In this study, tryptophan depletion and loading were used to investigate changes in blood kynurenine pathway metabolites, as well as markers of inflammation and oxidative stress in HD patients and healthy controls. Results showed that the kynurenine : tryptophan ratio was(More)