Learn More
Thin-walled aerospace structures can be idealised as dimensionally reduced shell models. These models can be analysed in a fraction of the time required for a full 3D model yet still provide remarkably accurate results. The disadvantages of this approach are the time taken to derive the idealised model, though this is offset by the ease and rapidity of(More)
In this paper, a novel approach to automatically sub-divide a complex geometry and apply an efficient mesh is presented. Following the identification and removal of thin-sheet regions from an arbitrary solid using the thick/thin decomposition approach developed by Robinson et al. [1], the technique here employs shape metrics generated using local sizing(More)
This paper describes an automatic method for generating analysis models to be meshed with finite elements of more than one dimension, known as mixed dimensional models. Mixed dimensional models offer much reduced analysis times, while not compromising simulation accuracy to the same extent as fully dimensionally reduced models composed of 2D elements(More)
The creation of idealised, dimensionally reduced meshes for preliminary design and optimisation remains a time-consuming, manual task. A dimensionally reduced model is ideal for assessing design changes through modification of element properties without the need to create a new geometry or mesh. In this paper, a novel approach for automating the creation of(More)
The automatic generation of structured multi-block quadrilateral (quad) and hexahedral (hex) meshes has been researched for many years without definitive success. The core problem in quad / hex mesh generation is the placement of mesh singularities to give the desired mesh orientation and distribution [1]. It is argued herein that existing approaches(More)
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities, where virtual decompositions are robustly linked to the underlying geometry. Current virtual topology technology(More)
New techniques are presented for using the medial axis to generate high quality decompositions for generating block-structured meshes with well-placed mesh singularities away from the surface boundaries. Established medial axis based meshing algorithms are highly effective for some geometries, but in general, they do not produce the most favourable(More)
This paper describes a novel approach to generating a multi-block decomposition of 2-D domains into high quality quad sub-regions using the medial axis transform (MAT). Bunin's continuum theory for unstructured mesh generation [1] is used as a means of understanding how the information contained in the MAT can be used to find effective positions for mesh(More)