Trevor P Almeida

Learn More
Magnetite (Fe3O4) is an important magnetic mineral to Earth scientists, as it carries the dominant magnetic signature in rocks, and the understanding of its magnetic recording fidelity provides a critical tool in the field of palaeomagnetism. However, reliable interpretation of the recording fidelity of Fe3O4 particles is greatly diminished over time by(More)
The study of the paleomagnetic signal recorded by rocks allows scientists to understand Earth's past magnetic field and the formation of the geodynamo. The magnetic recording fidelity of this signal is dependent on the magnetic domain state it adopts. The most prevalent example found in nature is the pseudo-single-domain (PSD) structure, yet its recording(More)
The hydrothermal growth mechanism of α-Fe₂O₃ nanorods has been investigated using a novel valve assisted pressure autoclave. This approach has facilitated the rapid quenching of hydrothermal suspensions into liquid nitrogen, providing 'snapshots' representative of the near in situ physical state of the synthesis reaction products as a function of known(More)
A unique new class of core-shell structured composite nanoparticles, C-coated inorganic fullerene-like WS2 (IF-WS2) hollow nanoparticles, has been created for the first time in large quantities, by a continuous chemical vapour deposition method using a rotary furnace. Transmission electron microscopy and Raman characterisations of the resulting samples(More)
The hydrothermal synthesis (HS) of CoFe2O4 nanoparticles (NPs) has been investigated as a function of reaction temperature and pH, using complementary characterisation techniques of transmission electron microscopy and X-ray diffractometry. The HS of CoFe2O4 NPs (< 25 nm) at pH - 8 proceeded through the formation and dissolution of intermediate Fe(OH)3 and(More)
The hydrothermal synthesis (HS) of NiFe2O4 nanoparticles (NPs) has been investigated using a novel valve-assisted pressure autoclave. This approach has facilitated the rapid quenching of hydrothermal suspensions into liquid nitrogen, providing 'snapshots' representative of the near in situ physical state of the synthesis reaction products as a function of(More)
The thermal demagnetization of pseudo-single-domain (PSD) magnetite (Fe3O4) particles, which govern the magnetic signal in many igneous rocks, is examined using off-axis electron holography. Visualization of a vortex structure held by an individual Fe3O4 particle (~250 nm in diameter) during in situ heating is achieved through the construction and(More)
A suite of near-identical magnetite nanodot samples produced by electron-beam lithography have been used to test the thermomagnetic recording fidelity of particles in the 74–333 nm size range; the grain size range most commonly found in rocks. In addition to controlled grain size, the samples had identical particle spacings, meaning that intergrain(More)
  • 1