Learn More
Geobacter sulfurreducens developed highly structured, multilayer biofilms on the anode surface of a microbial fuel cell converting acetate to electricity. Cells at a distance from the anode remained viable, and there was no decrease in the efficiency of current production as the thickness of the biofilm increased. Genetic studies demonstrated that efficient(More)
It has been previously noted that mixed communities typically produce more power in microbial fuel cells than pure cultures. If true, this has important implications for the design of microbial fuel cells and for studying the process of electron transfer on anode biofilms. To further evaluate this, Geobacter sulfurreducens was grown with acetate as fuel in(More)
Microbial electrosynthesis, a process in which microorganisms use electrons derived from electrodes to reduce carbon dioxide to multicarbon, extracellular organic compounds, is a potential strategy for capturing electrical energy in carbon-carbon bonds of readily stored and easily distributed products, such as transportation fuels. To date, only one(More)
The possibility of providing the acetogenic microorganism Sporomusa ovata with electrons delivered directly to the cells with a graphite electrode for the reduction of carbon dioxide to organic compounds was investigated. Biofilms of S. ovata growing on graphite cathode surfaces consumed electrons with the reduction of carbon dioxide to acetate and small(More)
Whole-genome analysis of gene expression in Geobacter sulfurreducens revealed 474 genes with transcript levels that were significantly different during growth with an electrode as the sole electron acceptor versus growth on Fe(III) citrate. The greatest response was a more than 19-fold increase in transcript levels for omcS, which encodes an outer-membrane(More)
The mechanisms by which Geobacter sulfurreducens transfers electrons through relatively thick (>50 microm) biofilms to electrodes acting as a sole electron acceptor were investigated. Biofilms of Geobacter sulfurreducens were grown either in flow-through systems with graphite anodes as the electron acceptor or on the same graphite surface, but with fumarate(More)
The Geobacteraceae citrate synthase is phylogenetically distinct from those of other prokaryotes and is a key enzyme in the central metabolism of Geobacteraceae. Therefore, the potential for using levels of citrate synthase mRNA to estimate rates of Geobacter metabolism was evaluated in pure culture studies and in four different Geobacteraceae-dominated(More)
The possibility that graphite electrodes can serve as the direct electron donor for microbially catalyzed reductive dechlorination was investigated with Geobacter lovleyi. In an initial evaluation of whether G. lovleyi could interact electronically with graphite electrodes, cells were provided with acetate as the electron donor and an electrode as the sole(More)
Fe(III)-reducing isolates were recovered from two aquifers in which Fe(III) reduction is known to be important. Strain Bem(T) was enriched from subsurface sediments collected in Bemidji, MN, USA, near a site where Fe(III) reduction is important in aromatic hydrocarbon degradation. Strains P11, P35(T) and P39 were isolated from the groundwater of an aquifer(More)
This study investigated the possibility that the electrical conductivity of carbon cloth accelerates direct interspecies electron transfer (DIET) in co-cultures. Carbon cloth accelerated metabolism of DIET co-cultures (Geobacter metallireducens-Geobacter sulfurreducens and G.metallireducens-Methanosarcina barkeri) but did not promote metabolism of(More)