Learn More
Axons dictate whether or not they will become myelinated in both the central and peripheral nervous systems by providing signals that direct the development of myelinating glia. Here we identify the neurotrophin nerve growth factor (NGF) as a potent regulator of the axonal signals that control myelination of TrkA-expressing dorsal root ganglion neurons(More)
The transcriptional control of CNS myelin gene expression is poorly understood. Here we identify gene model 98, which we have named myelin gene regulatory factor (MRF), as a transcriptional regulator required for CNS myelination. Within the CNS, MRF is specifically expressed by postmitotic oligodendrocytes. MRF is a nuclear protein containing an(More)
Mechanistic studies of CNS myelination have been hindered by the lack of a rapidly myelinating culture system. Here, we describe a versatile CNS coculture method that allows time-lapse microscopy and molecular analysis of distinct stages of myelination. Employing a culture architecture of reaggregated neurons fosters extension of dense beds of axons from(More)
Formation of the paranodal axoglial junction (PNJ) requires the presence of three cell adhesion molecules: the 155-kDa isoform of neurofascin (NF155) on the glial membrane and a complex of Caspr and contactin found on the axolemma. Here we report that the clustering of Caspr along myelinated axons during development differs fundamentally between the central(More)
The controlling factors that prompt mature oligodendrocytes to myelinate axons are largely undetermined. In this study, we used a forward genetics approach to identify a mutant mouse strain characterized by the absence of CNS myelin despite the presence of abundant numbers of late-stage, process-extending oligodendrocytes. Through linkage mapping and(More)
This protocol describes the generation of a rapidly myelinating central nervous system coculture for the study of complex neuronal-glial interactions in vitro. Postnatal rat retinal ganglion cells (RGCs) purified by immunopanning are promoted to cluster into reaggregates and then allowed to extend dense beds of radial axons for 10-14 d. Subsequently, rodent(More)
In this article, we introduce methods for generating rapidly myelinating cocultures with reaggregates of purified retinal ganglion cells and optic nerve oligodendrocyte precursor cells. This coculture system facilitates the study of complex central nervous system neuronal-glial interactions and myelination. It enables control of the extracellular(More)
  • 1