Learn More
We increase the lexical coverage of FrameNet through automatic paraphrasing. We use crowdsourcing to manually filter out bad paraphrases in order to ensure a high-precision resource. Our expanded FrameNet contains an additional 22K lexical units, a 3-fold increase over the current FrameNet, and achieves 40% better coverage when evaluated in a practical(More)
Effectively exploring and analyzing large text corpora requires visualizations that provide a high level summary. Past work has relied on faceted browsing of document metadata or on natural language processing of document text. In this paper, we present a new web-based tool that integrates topics learned from an unsuper-vised topic model in a faceted(More)
We introduce PARMA, a system for cross-document, semantic predicate and argument alignment. Our system combines a number of linguistic resources familiar to researchers in areas such as recognizing textual entailment and question answering, integrating them into a simple discrimina-tive model. PARMA achieves state of the art results on an existing and a new(More)
We present a joint model for predicate argument alignment. We leverage multiple sources of semantic information, including temporal ordering constraints between events. These are combined in a max-margin framework to find a globally consistent view of entities and events across multiple documents, which leads to improvements over a very strong local(More)
Most work on building knowledge bases has focused on collecting entities and facts from as large a collection of documents as possible. We argue for and describe a new paradigm where the focus is on a high-recall extraction over a small collection of documents under the supervision of a human expert, that we call Interactive Knowledge Base Population (IKBP).
Natural language processing research increasingly relies on the output of a variety of syntactic and semantic analytics. Yet integrating output from multiple analytics into a single framework can be time consuming and slow research progress. We present a CONCRETE Chinese NLP Pipeline: an NLP stack built using a series of open source systems integrated based(More)
  • 1