Travis J Bourret

Learn More
Aerobic metabolism generates biologically challenging reactive oxygen species (ROS) by the endogenous autooxidation of components of the electron transport chain (ETC). Basal levels of oxidative stress can dramatically rise upon activation of the NADPH oxidase-dependent respiratory burst. To minimize ROS toxicity, prokaryotic and eukaryotic organisms(More)
We report herein a critical role for the stringent response regulatory DnaK suppressor protein (DksA) in the coordination of antioxidant defenses. DksA helps fine-tune the expression of glutathione biosynthetic genes and discrete steps in the pentose phosphate pathway and tricarboxylic acid cycle that are associated with the generation of reducing power.(More)
By remodeling the phagosomal membrane, the type III secretion system encoded within the Salmonella pathogenicity island-2 (SPI2) helps Salmonella thrive within professional phagocytes. We report here that nitric oxide (NO) generated by IFNgamma-activated macrophages abrogates the intracellular survival advantage associated with a functional SPI2 type III(More)
We show here that the nitric oxide (NO)-detoxifying Hmp flavohemoprotein increases by 3-fold the transcription of the Salmonella pathogenicity island 2 (SPI2) in macrophages expressing a functional inducible NO synthase (iNOS). However, Hmp does not prevent NO-related repression of SPI2 transcription in IFNgamma-primed phagocytes, despite preserving(More)
Here we show that the Salmonella enterica serovar Typhimurium PhoQ sensor kinase lessens the cytotoxicity of reactive nitrogen species (RNS) generated by inducible nitric oxide synthase (iNOS) in the innate response of mononuclear phagocytic cells. This observation is consistent with the expression patterns of PhoP-activated genes during moderate(More)
Borrelia burgdorferi encounters potentially harmful reactive nitrogen species (RNS) throughout its infective cycle. In this study, diethylamine NONOate (DEA/NO) was used to characterize the lethal effects of RNS on B. burgdorferi. RNS produce a variety of DNA lesions in a broad spectrum of microbial pathogens; however, levels of the DNA deamination product,(More)
We show herein that the Salmonella pathogenicity island 2 (SPI2) response regulator SsrB undergoes S-nitrosylation upon exposure of Salmonella to acidified nitrite, a signal encountered by this enteropathogen in phagosomes of macrophages. Mutational analysis has identified Cys(203) in the C-terminal dimerization domain of SsrB as the redox-active residue(More)
BACKGROUND Reactive nitrogen species (RNS) derived from dietary and salivary inorganic nitrogen oxides foment innate host defenses associated with the acidity of the stomach. The mechanisms by which these reactive species exert antimicrobial activity in the gastric lumen are, however, poorly understood. METHODOLOGY/PRINCIPAL FINDINGS The genetically(More)
Pathogenic spirochetes cause clinically relevant diseases in humans and animals, such as Lyme disease and leptospirosis. The causative agent of Lyme disease, Borrelia burgdorferi, and the causative agent of leptospirosis, Leptospria interrogans, encounter reactive oxygen species (ROS) during their enzootic cycles. This report demonstrated that(More)
The Lyme disease spirochete Borrelia burgdorferi encounters a wide range of environmental conditions as it cycles between ticks of the genus Ixodes and its various mammalian hosts. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are potent antimicrobial molecules generated during the innate immune response to infection, however, it is(More)