Travis E. Huxman

Learn More
In the arid and semiarid regions of North America, discrete precipitation pulses are important triggers for biological activity. The timing and magnitude of these pulses may differentially affect the activity of plants and microbes, combining to influence the C balance of desert ecosystems. Here, we evaluate how a “pulse” of water influences physiological(More)
Water availability limits plant growth and production in almost all terrestrial ecosystems. However, biomes differ substantially in sensitivity of aboveground net primary production (ANPP) to between-year variation in precipitation. Average rain-use efficiency (RUE; ANPP/precipitation) also varies between biomes, supposedly because of differences in(More)
Large-scale biogeographical shifts in vegetation are predicted in response to the altered precipitation and temperature regimes associated with global climate change. Vegetation shifts have profound ecological impacts and are an important climate-ecosystem feedback through their alteration of carbon, water, and energy exchanges of the land surface. Of(More)
Arid ecosystems, which occupy about 20% of the earth's terrestrial surface area, have been predicted to be one of the most responsive ecosystem types to elevated atmospheric CO2 and associated global climate change. Here we show, using free-air CO2 enrichment (FACE) technology in an intact Mojave Desert ecosystem, that new shoot production of a dominant(More)
How biological diversity is generated and maintained is a fundamental question in ecology. Ecologists have delineated many mechanisms that can, in principle, favor species coexistence and hence maintain biodiversity. Most such coexistence mechanisms require or imply tradeoffs between different aspects of species performance. However, it remains unknown(More)
Understanding energy and material fluxes through ecosystems is central to many questions in global change biology and ecology. Ecosystem respiration is a critical component of the carbon cycle and might be important in regulating biosphere response to global climate change. Here we derive a general model of ecosystem respiration based on the kinetics of(More)
Increases in the abundance or density of woody plants in historically semiarid and arid grassland ecosystems have important ecological, hydrological, and socioeconomic implications. Using a simplified water-balance model, we propose a framework for conceptualizing how woody plant encroachment is likely to affect components of the water cycle within these(More)
We evaluated the hypothesis that CO2 uptake by a subalpine, coniferous forest is limited by cool temperature during the growing season. Using the eddy covariance approach we conducted observations of net ecosystem CO2 exchange (NEE) across two growing seasons. When pooled for the entire growing season during both years, light-saturated net ecosystem CO2(More)
The influences of prior monsoon-season drought (PMSD) and the seasonal timing of episodic rainfall ('pulses') on carbon and water exchange in water-limited ecosystems are poorly quantified. *In the present study, we estimated net ecosystem exchange of CO(2) (NEE) and evapotranspiration (ET) before, and for 15 d following, experimental irrigation in a(More)
Physiological activity and structural dynamics in arid and semi-arid ecosystems are driven by discrete inputs or “pulses” of growing season precipitation. Here we describe the short-term dynamics of ecosystem physiology in experimental stands of native (Heteropogon contortus) and invasive (Eragrostis lehmanniana) grasses to an irrigation pulse across two(More)