Travis E. Brown

Learn More
Recent research suggests that drug-related memories are reactivated after exposure to environmental cues and may undergo reconsolidation, a process that can strengthen memories. Conversely, reconsolidation may be disrupted by certain pharmacological agents such that the drug-associated memory is weakened. Several studies have demonstrated disruption of(More)
In rat models of drug relapse and craving, cue-induced cocaine seeking progressively increases after withdrawal from the drug. This 'incubation of cocaine craving' is partially mediated by time-dependent adaptations at glutamatergic synapses in nucleus accumbens (NAc). However, the circuit-level adaptations mediating this plasticity remain elusive. We(More)
Persistent drug seeking/taking behavior involves the consolidation of memory. With each drug use, the memory may be reactivated and reconsolidated to maintain the original memory. During reactivation, the memory may become labile and susceptible to disruption; thus, molecules involved in plasticity should influence acquisition and/or reconsolidation.(More)
Locomotor sensitization is a common and robust behavioral alteration in rodents whereby following exposure to abused drugs such as cocaine, the animal becomes significantly more hyperactive in response to an acute drug challenge. Here, we further analyzed the role of cocaine-induced silent synapses in the nucleus accumbens (NAc) shell and their contribution(More)
The reduction in synaptic transmission and plasticity in mice lacking the hippocampus-enriched AMPA receptor (AMPAR) auxiliary subunit TARPγ-8 could be a result of a reduction in AMPAR expression or of the direct action of γ-8. We generated TARPγ-8Δ4 knock-in mice lacking the C-terminal PDZ ligand. We found that synaptic transmission and AMPARs were reduced(More)
UNLABELLED Intracerebroventricular administration of angiotensins causes pronounced pressor and dipsogenic responses. The suggestion that angiotensin III rather than angiotensin II is the active peptide in the brain spawned what we call The Angiotensin III. HYPOTHESIS To test this hypothesis, 5 angiotensin II analogs containing zero or one position(More)
Alterations in synaptic efficiency that underlie learning and memory consolidation appear to require an accompanying reconfiguration of the extracellular matrix (ECM). This restructuring of the ECM is carried out, in part, by a family of enzymes called, the matrix metalloproteinases, which includes matrix metalloproteinase-3 (MMP-3: stromelysin-1). The(More)
PURPOSE To characterize the functional consequences of disease-associated mutations in the CNGB3 (B3) subunit of human cone photoreceptor cyclic nucleotide-gated channels in order to gain insight into disease mechanisms. METHODS Three separate disease-associated mutations were generated in CNGB3: F525N, R403Q, and T383fsX. These mutant subunits were then(More)
TRPV (transient receptor potential, vanilloid) channels are a family of nonselective cation channels that are activated by a wide variety of chemical and physical stimuli. TRPV1 channels are highly expressed in sensory neurons in the peripheral nervous system. However, a number of studies have also reported TRPV channels in the brain, though their functions(More)
Memory consolidation requires synaptic reconfiguration dependent upon extracellular matrix (ECM) molecules interacting with cell adhesion molecules. Matrix metalloproteinase (MMP) activity is responsible for transient alterations in the ECM that may be prerequisite to hippocampal-dependent learning. In support of this hypothesis we have measured increases(More)