Travis E. Baker

Learn More
The reinforcement learning theory of the error-related negativity (ERN) holds that the impact of reward signals carried by the midbrain dopamine system modulates activity of the anterior cingulate cortex (ACC), alternatively disinhibiting and inhibiting the ACC following unpredicted error and reward events, respectively. According to a recent formulation of(More)
In 2 human event-related brain potential (ERP) experiments, we examined the feedback error-related negativity (fERN), an ERP component associated with reward processing by the midbrain dopamine system, and the N170, an ERP component thought to be generated by the medial temporal lobe (MTL), to investigate the contributions of these neural systems toward(More)
Behavioral and neurophysiological evidence suggest that attention-deficit hyperactivity disorder (ADHD) is characterized by the impact of abnormal reward prediction error signals carried by the midbrain dopamine system on frontal brain areas that implement cognitive control. To investigate this issue, we recorded the event-related brain potential (ERP) from(More)
Recent theories of drug dependence propose that the transition from occasional recreational substance use to harmful use and dependence results from the impact of disrupted midbrain dopamine signals for reinforcement learning on frontal brain areas that implement cognitive control and decision-making. We investigated this hypothesis in humans using(More)
An influential neurocomputational theory of the biological mechanisms of decision making, the "basal ganglia go/no-go model," holds that individual variability in decision making is determined by differences in the makeup of a striatal system for approach and avoidance learning. The model has been tested empirically with the probabilistic selection task(More)
In their recent Opinion article, Cohen and colleagues discuss the relative strengths of the event-related brain potential (ERP) and time-frequency (TF) techniques for investigating cognitive function [1]. Their discussion pivots on the example of an ERP component called the feedback-related negativity (FRN), which we have proposed reflects the impact of(More)
We recently demonstrated that the latency of a component of the event-related brain potential, the topographical N170 (NT170), is sensitive to the spatial location of reward-related stimuli in a virtual maze environment, occurring earlier for rewards found following rightward turns compared to leftward turns. We suggested that this NT170 latency effect may(More)
Phase reset of parahippocampal electrophysiological oscillations in the theta frequency range is said to contribute to item encoding and retrieval during spatial navigation. Although well-studied in non-human animals, this mechanism is poorly understood in humans. Previously we found that feedback stimuli presented in a virtual maze environment elicited a(More)
The electrophysiological response to positive and negative feedback during reinforcement learning has been well documented over the past two decades, yet, little is known about the neural response to uninformative events that often follow our actions. To address this issue, we recorded the electroencephalograph (EEG) during a time-estimation task using both(More)