Learn More
Myeloid-derived suppressor cells (MDSCs) and cancer stem cells (CSCs) are important cellular components in the cancer microenvironment and may affect cancer phenotype and patient outcome. The nature of MDSCs and their interaction with CSCs in ovarian carcinoma are unclear. We examined the interaction between MDSCs and CSCs in patients with ovarian carcinoma(More)
Animal studies have shown that platelet-derived growth factor (PDGF) signaling is required for normal alveolarization. Changes in PDGF receptor (PDGFR) expression in infants with bronchopulmonary dysplasia (BPD), a disease of hypoalveolarization, have not been examined. We hypothesized that PDGFR expression is reduced in neonatal lung mesenchymal stromal(More)
Diverse physiological actions of growth hormone (GH) are mediated by changes in gene transcription. Transcription can be regulated at several levels, including post-translational modification of transcription factors, and formation of multiprotein complexes involving transcription factors, co-regulators and additional nuclear proteins; these serve as(More)
In examination of mechanisms regulating metabolic responses to growth hormone (GH), microarray analysis identified 561 probe sets showing time-dependent patterns of expression in GH-treated 3T3-F442A adipocytes. Biological functions significantly over-represented among GH-regulated genes include regulators of transcription at early times, and lipid(More)
The Brca2 tumor-suppressor gene contributes to genomic stability, at least in part by a role in homologous recombinational repair. BRCA2 protein is presumed to function in homologous recombination through interactions with RAD51. Both exons 11 and 27 of Brca2 code for domains that interact with RAD51; exon 11 encodes eight BRC motifs, whereas exon 27(More)
The regulation of c-fos transcription by GH involves multiple factors, including CCAAT/enhancer binding protein (C/EBP) beta. Knockdown of C/EBPbeta by RNA interference prevents stimulation of endogenous c-fos mRNA by GH, indicating a key role for C/EBPbeta in GH-stimulated c-fos transcription. GH rapidly increases the occupancy of both endogenous C/EBPbeta(More)
Regulation of c-Fos transcription by GH is mediated by CCAAT/enhancer binding protein β (C/EBPβ). This study examines the role of C/EBPβ in mediating GH activation of other early response genes, including Cyr61, Btg2, Socs3, Zfp36, and Socs1. C/EBPβ depletion using short hairpin RNA impaired responsiveness of these genes to GH, as seen for c-Fos. Rescue(More)
GH activates the c-fos promoter by regulating multiple transcription factors. This study adds to our understanding of GH-regulated transcription by demonstrating that GH regulates the c-fos cAMP-response element (CRE) and its binding protein, CREB. Activation of the c-fos promoter by GH is impaired by expression of dominant-negative A-CREB. GH stimulates(More)
The transcription factor CCAAT/enhancer binding protein beta (C/EBPbeta) contains multiple acetylation sites, including lysine (K) 39. Mutation of C/EBPbeta at K39, an acetylation site in the transcriptional activation domain, impairs transcription of C/EBPbeta target genes in a dominant-negative fashion. Further, K39 of C/EBPbeta can be deacetylated by(More)
The aim of this study was to compare the proteomics pattern of the kidneys from Cyld knockout mice with that from normal mouse kidneys and establish a preliminary understanding of the role of Cyld in the kidney. Proteins from the kidneys of knockout Cyld mice and wild-type mice were extracted, isobaric tags for relative and absolute quantitation (iTRAQ) was(More)