Tracy L Baker-Herman

Learn More
Intermittent hypoxia causes a form of serotonin-dependent synaptic plasticity in the spinal cord known as phrenic long-term facilitation (pLTF). Here we show that increased synthesis of brain-derived neurotrophic factor (BDNF) in the spinal cord is necessary and sufficient for pLTF in adult rats. We found that intermittent hypoxia elicited(More)
Respiratory long-term facilitation (LTF) is a form of serotonin-dependent plasticity induced by intermittent hypoxia. LTF is manifested as a long-lasting increase in respiratory amplitude (and frequency) after the hypoxic episodes have ended. We tested the hypotheses that LTF of phrenic amplitude requires spinal serotonin receptor activation and spinal(More)
Acute intermittent hypoxia elicits a form of spinal, brain-derived neurotrophic factor (BDNF)-dependent respiratory plasticity known as phrenic long-term facilitation. Ligands that activate G(s)-protein-coupled receptors, such as the adenosine 2a receptor, mimic the effects of neurotrophins in vitro by transactivating their high-affinity receptor tyrosine(More)
Following chronic C2 spinal hemisection (C2HS), crossed spinal pathways to phrenic motoneurons exhibit a slow, spontaneous increase in efficacy by a serotonin (5-HT)-dependent mechanism associated with 5-HT2A receptor activation. Further, the spontaneous appearance of cross-phrenic activity following C2HS is accelerated and enhanced by exposure to chronic(More)
Acute intermittent (AIH), but not acute sustained hypoxia (ASH) elicits a form of respiratory plasticity known as long-term facilitation (LTF). In anesthetized rats, LTF is expressed as increased respiratory-related nerve burst amplitude, with variable effects on burst frequency. We analyzed a large data set from multiple investigators using the same(More)
Phrenic long-term facilitation (pLTF) is a serotonin-dependent form of pattern-sensitive respiratory plasticity induced by intermittent hypoxia (IH), but not sustained hypoxia (SH). The mechanism(s) underlying pLTF pattern sensitivity are unknown. SH and IH may differentially regulate serine/threonine protein phosphatase activity, thereby inhibiting(More)
We hypothesized that reduced respiratory neural activity elicits compensatory mechanisms of plasticity that enhance respiratory motor output. In urethane-anesthetized and ventilated rats, we reversibly reduced respiratory neural activity for 25-30 min using: hypocapnia (end tidal CO(2)=30 mmHg), isoflurane (~1%) or high frequency ventilation (HFV; ~100(More)
Multiple forms of plasticity are activated following reduced respiratory neural activity. For example, in ventilated rats, a central neural apnea elicits a rebound increase in phrenic and hypoglossal burst amplitude upon resumption of respiratory neural activity, forms of plasticity called inactivity-induced phrenic and hypoglossal motor facilitation (iPMF(More)
The neural network controlling breathing must establish rhythmic motor output at a level adequate to sustain life. Reduced respiratory neural activity elicits a novel form of plasticity in circuits driving the diaphragm known as inactivity-induced phrenic motor facilitation (iPMF), a rebound increase in phrenic inspiratory output observed once respiratory(More)
Intermittent hypoxia-induced long-term facilitation (LTF) is variably expressed in the motor output of several inspiratory nerves, such as the phrenic and hypoglossal. Compared to phrenic LTF (pLTF), less is known about hypoglossal LTF (hLTF), although it is often assumed that cellular mechanisms are the same. While fundamental mechanisms appear to be(More)