Trachette L. Jackson

Learn More
Stem cells are proposed to segregate chromosomes asymmetrically during self-renewing divisions so that older ('immortal') DNA strands are retained in daughter stem cells whereas newly synthesized strands segregate to differentiating cells. Stem cells are also proposed to retain DNA labels, such as 5-bromo-2-deoxyuridine (BrdU), either because they segregate(More)
This work describes the first cell-based model of tumor-induced angiogenesis. At the extracellular level, the model describes diffusion, uptake, and decay of tumor-secreted pro-angiogenic factor. At the cellular level, the model uses the cellular Potts model based on system-energy reduction to describe endothelial cell migration, growth, division, cellular(More)
A spatio-temporal model of tumor response to sequestered, intracellular doxorubicin is presented and simulated. An important feature of the model is the characterization of different mechanisms by which doxorubicin initiates the cell death cascade. The model predicts that the long-term response of the tumor to repeated rounds of therapy is very sensitive to(More)
Stem cells are thought to balance self-renewal and differentiation through asymmetric and symmetric divisions, but whether such divisions occur during hematopoietic development remains unknown. Using a Notch reporter mouse, in which GFP acts as a sensor for differentiation, we image hematopoietic precursors and show that they undergo both symmetric and(More)
Cancer invasion and metastasis depend on tumor-induced angiogenesis, the means by which cancer cells attract and maintain a blood supply. During angiogenesis, cellular processes are tightly coordinated by signaling molecules and their receptors. Understanding how endothelial cells synthesize multiple biochemical signals can catalyze the development of novel(More)
The extracellular matrix plays a critical role in orchestrating the events necessary for wound healing, muscle repair, morphogenesis, new blood vessel growth, and cancer invasion. In this study, we investigate the influence of extracellular matrix topography on the coordination of multi-cellular interactions in the context of angiogenesis. To do this, we(More)
The presence of a capsule around a tumor is known to be correlated with benign status, and the absence of a capsule often has negative implications for patient prognosis. A mechanical description is presented of the growth of a tumor and the resulting deformations of surrounding normal tissue. A mathematical model of the mechanics is analyzed using physical(More)
In this paper, a mathematical modeling framework is presented which describes the growth, encapsulation, and transcapsular spread of solid tumors. The model is based on the physical forces and cellular interactions involved in tumorigenesis and is used to test and compare the active (foreign body hypothesis) and passive (expansive growth hypothesis)(More)
Recent experiments show that vascular endothelial growth factor (VEGF) is the crucial mediator of downstream events that ultimately lead to enhanced endothelial cell survival and increased vascular density within many tumors. The newly discovered pathway involves up-regulation of the anti-apoptotic protein Bcl-2, which in turn leads to increased production(More)