Toyotaka Ishibashi

Learn More
COP10 is a ubiquitin-conjugating enzyme variant (UEV), which is thought to act together with COP1, DET1, and the COP9 signalosome (CSN) in Arabidopsis to repress photomorphogenesis. Here, we demonstrate that COP10 interacts with ubiquitin-conjugating enzymes (E2s) in vivo, and can enhance their activity in vitro, an activity distinct from previous(More)
Little is known about the functions of DNA polymerase lambda (Pol lambda) recently identified in mammals. From the genomic sequence information of rice and Arabidopsis, we found that Pol lambda may be the only member of the X-family in higher plants. We have succeeded in isolating the cDNA and recombinant protein of Pol lambda in a higher plant, rice (Oryza(More)
Within chromatin, the histone variant H2A.Z plays a role in many diverse nuclear processes including transcription, preventing the spread of heterochromatin and epigenetic transcriptional memory. The molecular mechanisms of how H2A.Z mediates its effects are not entirely understood. However, it is now known that H2A.Z has two protein isoforms in(More)
Replication protein A (RPA) is a protein complex composed of three subunits known as RPA70, RPA32, and RPA14. Generally, only one version of each of the three RPA genes is present in animals and yeast (with the exception of the human RPA32 ortholog). In rice (Oryza sativa L.), however, two paralogs of RPA70 have been reported. We screened the rice genome(More)
Methyl CpG binding protein 2 (MeCP2) is a basic protein that contains a DNA methyl binding domain. The mechanism by which the highly positive charge of MeCP2 and its ability to bind methylated DNA contribute to the specificity of its binding to chromatin has long remained elusive. In this paper, we show that MeCP2 binds to nucleosomes in a very similar way(More)
Ultraviolet-damaged DNA binding protein (UV-DDB) is an important factor involved in DNA repair. To study the role of UV-DDB, we attempted to obtain the cDNA and the protein of a plant UV-DDB. We succeeded in isolating both genes for UV-DDB subunits from rice (Oryza sativa cv. Nipponbare), designated as OsUV-DDB1 and OsUV-DDB2. OsUV-DDB2 (65 kDa) was much(More)
Replication factor C (RFC), which is composed of five subunits, is an important factor involved in DNA replication and repair mechanisms. Following previous studies on the RFC3 homologue from rice (Oryza sativa L. cv. Nipponbare) (OsRFC3), we succeeded in isolating and characterizing one large and three small subunits of RFC homologues from the same rice(More)
Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct(More)
Molecular evolutionary analyses revealed that histone H2A.Bbd is a highly variable quickly evolving mammalian replacement histone variant, in striking contrast to all other histones. At the nucleotide level, this variability appears to be the result of a larger amount of nonsynonymous variation, which affects to a lesser extent, the structural domain of the(More)
The histone H2A family encompasses the greatest number of core histone variants of which the replacement variant H2A.Z is currently one of the most heavily studied. No clear mechanism for the functional variability that H2A.Z imparts to chromatin has yet been proposed. While most of the past studies have referred to H2A.Z generically as a single protein, in(More)