Toyoko Tsukuda

Learn More
The repair of DNA double-strand breaks (DSBs) is crucial for maintaining genome stability. Eukaryotic cells repair DSBs by both non-homologous end joining and homologous recombination. How chromatin structure is altered in response to DSBs and how such alterations influence DSB repair processes are important issues. In vertebrates, phosphorylation of the(More)
Covalent modifications of the histone N tails play important roles in eukaryotic gene expression. Histone acetylation, in particular, is required for the activation of a subset of eukaryotic genes through the targeted recruitment of histone acetyltransferases. We have reported that a histone C tail modification, ubiquitylation of H2B, is required for(More)
The organization of eukaryotic DNA into chromatin poses a barrier to all processes that require access of enzymes and regulatory factors to their sites of action. While the majority of studies in this area have concentrated on the role of chromatin in the regulation of transcription, there has been a recent emphasis on the relationship of chromatin to DNA(More)
Chromatin remodeling is emerging as a critical regulator of DNA repair factor access to DNA damage, and optimum accessibility of these factors is a major determinant of DNA repair outcome. Hence, chromatin remodeling is likely to play a key role in genome stabilization and tumor suppression. We previously showed that nucleosome eviction near double-strand(More)
We examined the induction of apoptosis by cytochalasin (cc) derivatives (1-14) isolated from the Japanese fungus Daldinia vernicosa to HCT116 human colon cancer cell line based on their cytotoxicity, DNA ladder and DNA fragmentation ratio in agarose gel electrophoresis, and morphological changes. Most cc derivatives tested here induced apoptosis.(More)
Multiple types of DNA damage, including bulky adducts, DNA single-strand breaks, and DNA double-strand breaks (DSBs), have deleterious effects on the genomes of eukaryotes. DSBs form normally during a variety of biological processes, such as V-D-J recombination and yeast mating type switching, but unprogrammed DSBs are among the most dangerous types of(More)
DNA repair occurs in a chromatin context, and nucleosome remodeling is now recognized as an important regulatory feature by allowing repair factors access to damaged sites. The yeast mating type locus (MAT) has emerged an excellent model to study the role of chromatin remodeling at a well-defined DNA double-strand break (DSB). We discuss methods to study(More)
  • 1