Toyohiko Kinoshita

Learn More
Graphene exhibits unusual electronic properties, caused by a linear band structure near the Dirac point. This band structure is determined by the stacking sequence in graphene multilayers. Here we present a novel method of microscopically controlling the band structure. This is achieved by epitaxy of graphene on 3C-SiC(111) and 3C-SiC(100) thin films grown(More)
Graphene, a 2D crystal bonded by π and σ orbitals, possesses excellent electronic properties that are promising for next-generation optoelectronic device applications. For these a precise understanding of quasiparticle behaviour near the Dirac point (DP) is indispensable because the vanishing density of states (DOS) near the DP enhances many-body effects,(More)
  • Christian Kramberger, Theerapol Thurakitseree, Erik Einarsson, Akito Takashima, Toyohiko Kinoshita, Takayuki Muro +1 other
  • 2014
The observation of one-dimensional N₂ inside single-walled carbon nanotubes raises the questions, how are the N₂ molecules formed and how do they manage to make their way to this peculiar place? We have used N(15) and C(13) isotope labeled acetonitrile during the synthesis of single-walled carbon nanotubes to investigate this process. The isotope shifts of(More)
The observation method of photoemission electron microscopy (PEEM) on insulating samples has been established in an extremely simple way. Surface conductivity is induced locally on an insulating surface by continuous radiation of soft X-rays, and Au films close to the area of interest allow the accumulated charges on the insulated area to be released to(More)
A system for angle-resolved photoemission spectroscopy (ARPES) of small single crystals with sizes down to 100 µm has been developed. Soft X-ray synchrotron radiation with a spot size of ∼40 µm × 65 µm at the sample position is used for the excitation. Using this system an ARPES measurement has been performed on a Si crystal of size 120 µm × 100 µm × 80 µm.(More)
We have succeeded in developing a method for photoemission electron microscopy (PEEM) on fully magnetized ferromagnetic bulk samples and have applied this technique to Dy-doped Nd-Fe-B permanent magnets. Remanence magnetization of the sample was approximately 1.2 T, and its dimension was 3 Â 3 Â 3 mm 3. By utilizing a yoke as an absorber of the stray(More)
  • 1