Learn More
Three groups of meso-accumbens (Acc) neurons in the ventral tegmental area were differentiated by their antidromic discharge property; dopaminergic type 1 (n = 10), non-dopaminergic type 2 (n = 2) and unclassified (n = 2) neurons. During repetitive activation at 10 Hz, the latency of the initial segment (IS) spike, which was often not followed by the(More)
To elucidate the mechanism of epileptogenesis, seizures were investigated in the EL mouse, which is an excellent model for epilepsy. In these mice, epileptic seizures initiate in the parietal cortex, where markers of GABA-mediated inhibition are reduced compared with the parietal cortex of DDY mice (the parent strain). This is the first report on units of(More)
Slowly discharging neurons in the cat dorsal raphe could be classified into 3 types according to the behavior of antidromic spike discharges during repetitive stimulation of the medial forebrain bundle at 10 Hz. In the types 1 and 2, the latency of antidromic discharge was gradually prolonged to reach an asymptote, whereas no marked change occurred in the(More)
A population of neurons in the rostroventral medulla, which send their axons to the subnucleus oralis of the trigeminal spinal nucleus of rats, could be differentiated into two types on the basis of their location and the variability of antidromic latency during repetitive stimulation at 10 Hz. Type A neurons were mostly located in the raphe magnus and were(More)
  • 1