Learn More
To clarify the mechanism of yokukansan (TJ-54), a traditional Japanese medicine, against glutamate-mediated excitotoxicity, the effects of TJ-54 on glutamate uptake function were first examined using cultured rat cortical astrocytes. Under thiamine-deficient conditions, the uptake of glutamate into astrocytes, and the levels of proteins and mRNA expressions(More)
Recent research in neural development has highlighted the importance of markers to discriminate phenotypic alterations of neural cells at various developmental stages. We isolated a new monoclonal antibody, 4F2, which was shown to be specific for an oligodendrocyte lineage. In primary cultures of oligodendroglial and mixed neural cells, the 4F2 antibody(More)
Disruption of myelin causes severe neurological diseases. An understanding of the mechanisms that control myelination and remyelination is needed to develop therapeutic strategies for demyelinating diseases such as multiple sclerosis (MS). Our previous finding indicating the critical involvement of the gamma chain of immunogloblin Fc receptors (FcRgamma)(More)
We previously demonstrated that yokukansan ameliorated not only learning disturbance but also behavioral and psychological symptoms of dementia-like behaviors (anxiety, aggressiveness) and neurological symptoms (opisthotonus) induced in rats by dietary thiamine deficiency (TD). In the present study, the effects of yokukansan on degeneration of cerebral(More)
Recent studies of adult neurogenesis of the mammalian central nervous system have suggested unexpected plasticity and complexity of neural cell ontogenesis. Redefinition and reconstitution of cell classification and lineage relationships, especially between glial and neural precursors, are an urgent and crucial concern. In the present study, we describe a(More)
BACKGROUND The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part of an effort to develop regulatory modules for genome-scale in silico models, which can predict the physiological responses of Geobacter species during(More)
We recently reported that a new monoclonal antibody, 4F2, which labels oligodendroglial lineage cells, recognizes a DEAD-box RNA helicase Ddx54 and that Ddx54 binds to myelin basic protein (MBP) in brain and cultured oligodendrocytes. To elucidate the biological function of Ddx54, we generated a recombinant adenovirus, Ad-shRNA:Ddx54, expressing a short(More)
Microbial conversion of carbon dioxide to organic commodities via syngas metabolism or microbial electrosynthesis is an attractive option for production of renewable biocommodities. The recent development of an initial genetic toolbox for the acetogen Clostridium ljungdahlii has suggested that C. ljungdahlii may be an effective chassis for such conversions.(More)
Geobacter species play important roles in bioremediation of contaminated environments and in electricity production from waste organic matter in microbial fuel cells. To better understand physiology of Geobacter species, expression and function of citrate synthase, a key enzyme in the TCA cycle that is important for organic acid oxidation in Geobacter(More)
Geobacter species often play an important role in bioremediation of environments contaminated with metals or organics and show promise for harvesting electricity from waste organic matter in microbial fuel cells. The ability of Geobacter species to fix atmospheric nitrogen is an important metabolic feature for these applications. We identified novel(More)