Toshiyuki Ohtsuka

Learn More
Neurogenesis occurs continuously in the forebrain of adult mammals, but the functional importance of adult neurogenesis is still unclear. Here, using a genetic labeling method in adult mice, we found that continuous neurogenesis results in the replacement of the majority of granule neurons in the olfactory bulb and a substantial addition of granule neurons(More)
Transcription of messenger RNAs (mRNAs) for Notch signaling molecules oscillates with 2-hour cycles, and this oscillation is important for coordinated somite segmentation. However, the molecular mechanism of such oscillation remains to be determined. Here, we show that serum treatment of cultured cells induces cyclic expression of both mRNA and protein of(More)
While the transmembrane protein Notch plays an important role in various aspects of development, and diseases including tumors and neurological disorders, the intracellular pathway of mammalian Notch remains very elusive. To understand the intracellular pathway of mammalian Notch, the role of the bHLH genes Hes1 and Hes5 (mammalian hairy and(More)
Expression of the Notch effector gene Hes1 is required for maintenance of neural progenitors in the embryonic brain, but persistent and high levels of Hes1 expression inhibit proliferation and differentiation of these cells. Here, by using a real-time imaging method, we found that Hes1 expression dynamically oscillates in neural progenitors. Furthermore,(More)
Neural stem cells change their characteristics over time during development: they initially proliferate only and then give rise to neurons first and glial cells later. In the absence of the repressor-type basic helix-loop-helix (bHLH) genes Hes1, Hes3 and Hes5, neural stem cells do not proliferate sufficiently but prematurely differentiate into neurons and(More)
Neural stem cells, which differentiate into neurons and glia, are present in the ventricular zone of the embryonal brain. The precise mechanism by which neural stem cells are maintained during embryogenesis remains to be determined. Here, we found that transient misexpression of the basic helix-loop-helix genes Hes1 and Hes5 keeps embryonal telencephalic(More)
In the developing mammalian nervous system, neural progenitor cells first express the Notch effector Hes1 at variable levels and then proneural genes and Notch ligands in salt-and-pepper patterns. Recent real-time imaging analysis indicates that Hes1 expression in these cells oscillates with a period of about 2-3 h. Furthermore, the proneural gene(More)
Neurons and glial cells differentiate from common precursors. Whereas the gene glial cells missing (gcm) determines the glial fate in Drosophila, current data about the expression patterns suggest that, in mammals, gcm homologues are unlikely to regulate gliogenesis. Here, we found that, in mouse retina, the bHLH gene Hes5 was specifically expressed by(More)
Hes genes are mammalian homologues of Drosophila hairy and Enhancer of split, which encode basic helix-loop-helix (bHLH) transcriptional repressors. In the developing central nervous system, Hes1, Hes3 and Hes5 are highly expressed by neural stem cells. Inactivation of these Hes genes leads to upregulation of proneural genes, acceleration of neurogenesis(More)
Embryogenesis involves orchestrated processes of cell proliferation and differentiation. The mammalian Hes basic helix-loop-helix repressor genes play central roles in these processes by maintaining progenitor cells in an undifferentiated state and by regulating binary cell fate decisions. Hes genes also display an oscillatory expression pattern and control(More)