Toshiyuki Ikeda

Learn More
Bone mass and turnover are maintained by the coordinated balance between bone formation by osteoblasts and bone resorption by osteoclasts, under regulation of many systemic and local factors. Phosphoinositide-dependent serine-threonine protein kinase Akt is one of the key players in the signaling of potent bone anabolic factors. This study initially showed(More)
Hedgehog (Hh)-Patched1 (Ptch1) signaling plays essential roles in various developmental processes, but little is known about its role in postnatal homeostasis. Here, we demonstrate regulation of postnatal bone homeostasis by Hh-Ptch1 signaling. Ptch1-deficient (Ptch1+/-) mice and patients with nevoid basal cell carcinoma syndrome showed high bone mass in(More)
To elucidate the molecular mechanism underlying the endochondral ossification process during the skeletal growth and osteoarthritis (OA) development, we examined the signal network around CCAAT/enhancer-binding protein-β (C/EBPβ, encoded by CEBPB), a potent regulator of this process. Computational predictions and a C/EBP motif-reporter assay identified(More)
BACKGROUND Although transition from proliferation to hypertrophic differentiation of chondrocytes is a crucial step for endochondral ossification in physiological skeletal growth and pathological disorders like osteoarthritis, the underlying mechanism remains an enigma. This study investigated the role of the transcription factor CCAAT/enhancer-binding(More)
Individual skeletal elements of the vertebrate limbs arise through a segmentation process introducing joints in specific locations. However, the molecular pathways controlling joint formation and subsequent joint maintenance are largely unknown. In this study, we focused on SOX11, and its contribution to the regulation of GDF5, a secreted signal necessary(More)
Schwann cells are an important cell source for regenerative therapy for neural disorders. We investigated the role of the transcription factor sex determining region Y (SRY)-box 10 (SOX10) in the proliferation and myelination of Schwann cells. SOX10 is predominantly expressed in rat sciatic nerve-derived Schwann cells and is induced shortly after birth.(More)
Although techniques for cell-specific gene expression via viral transfer have advanced, many challenges (e.g., viral vector design, transduction of genes into specific target cells) still remain. We investigated a novel, simple methodology for using adenovirus transfer to target specific cells of the kidney tubules for the expression of exogenous proteins.(More)
Transcription factors SOX9, SOX5 and SOX6 are indispensable for generation and differentiation of chondrocytes. However, molecular mechanisms to induce the SOX genes are poorly understood. To address this issue, we previously determined the human embryonic enhancer of SOX6 by 5'RACE analysis, and identified the 46-bp core enhancer region (CES6). We(More)
  • 1