Learn More
This communication reports the laboratory scale study on the production of cement clinkers from two types of municipal solid waste incineration fly ash (MSW ash) samples. XRD technique was used to monitor the phase formation during the burning of the raw mixes. The amount of trace elements volatilized during clinkerization and hydration, as well as leaching(More)
The adsorption of arsenic from aqueous solution on synthetic zeolites H-MFI-24 (H24) and H-MFI-90 (H90) with MFI topology has been investigated at room temperature (r.t) applying batch equilibrium techniques. The influences of different sorption parameters such as contact time, solution pH, initial arsenic concentration and temperature were also studied(More)
Natural mordenite (NM), natural clinoptilolite (NC), HDTMA-modified natural mordenite (SMNM) and HDTMA-modified natural clinoptilolite (SMNC) have been proposed for the removal of As(V) from aqueous solution (HDTMA=hexadecyltrimethylammonium bromide). Influence of time on arsenic sorption efficiency of different sorbents reveals that NM, NC, SMNM and SMNC(More)
This paper reports the results of the adsorption performance of As(V) removal by a commercial carbon black and its H2SO4-modified form in a single-ion situation. The influence of different process parameters and the physicochemical principles involved were studied in detail. Acid modification caused morphological changes in the virgin carbon black as(More)
The sorption performance of a modified carbon black was explored with respect to arsenic removal following batch equilibrium technique. Modification was accomplished by refluxing the commercial carbon black with an acid mixture comprising HNO(3) and H(2)SO(4). Modification resulted in the substantial changes to the inherent properties like surface chemistry(More)
This paper introduces a scalable FPGA implementation of a stochastic simulation algorithm (SSA) called the next reaction method. There are some hardware approaches of SSAs that obtained high-throughput on reconfigurable devices such as FPGAs, but these works lacked in scalability. The design of this work can accommodate to the increasing size of target(More)
Stochastic simulation of biochemical systems has become one of major approaches to study life processes as system, yet is a computational challenge to run the simulation due to its vast calculation cost. This paper shows the implementation and evaluation of a stochastic simulation algorithm (SSA) called "first reaction method" on an FPGA-based biochemical(More)
In order to simulate large scale biological models with a reconfigurable FPGA-based biochemical simulator system, reduction of required resources are essential. This paper proposes a method which combines common terms in rate law functions appeared in biochemical models and generates a shared hardware module used for numerical integration. In this approach,(More)
The behavior of B, Cr, Se, As, Pb, Cd, and Mo in the leachates generated from two combustion residues, coal-fired power plant fly ash and municipal solid waste incineration ash, during precipitation of ettringite is presented. Experiments also were performed using modeled waste leachates as well as controlled solutions containing all the investigated(More)
Removal of arsenic from aqueous solution was carried out using electrocoagulation. Experiments were conducted using mild steel sacrificial anode covering wide range in operating conditions to assess the removal efficiency. The maximum arsenic removal efficiency was recorded as 94% under optimum condition. The electrocoagulation mechanism of arsenic removal(More)