Learn More
The movements of cilia and flagella are driven by multiple species of dynein heavy chains (DHCs), which constitute inner- and outer-dynein arms. In Chlamydomonas, 11 DHC proteins have been identified in the axoneme, but 14 genes encoding axonemal DHCs are present in the genome. Here, we assigned each previously unassigned DHC gene to a particular DHC(More)
Ciliary and flagellar axonemes are basically composed of nine outer doublet microtubules and several functional components, e.g. dynein arms, radial spokes, and interdoublet links. Each A-tubule of the doublet contains a specialized "ribbon" of three protofilaments composed of tubulin and other proteins postulated to specify the three-dimensional(More)
Understanding the molecular architecture of the flagellum is crucial to elucidate the bending mechanism produced by this complex organelle. The current known structure of the flagellum has not yet been fully correlated with the complex composition and localization of flagellar components. Using cryoelectron tomography and subtomogram averaging while(More)
Primary ciliary dyskinesia most often arises from loss of the dynein motors that power ciliary beating. Here we show that DNAAF3 (also known as PF22), a previously uncharacterized protein, is essential for the preassembly of dyneins into complexes before their transport into cilia. We identified loss-of-function mutations in the human DNAAF3 gene in(More)
Ciliary and flagellar axonemes contain multiple inner arm dyneins of which the functional difference is largely unknown. In this study, a Chlamydomonas mutant, ida9, lacking inner arm dynein c was isolated and shown to carry a mutation in the DHC9 dynein heavy chain gene. The cDNA sequence of DHC9 was determined, and its information was used to show that(More)
Memory deduplication shares same-content memory pages and reduces the consumption of physical memory. It is effective on environments that run many virtual machines with the same operating system. Memory deduplication, however, is vulnerable to memory disclosure attacks, which reveal the existence of an application or file on another virtual machine. Such(More)
Chlamydomonas flagella undergo a striking waveform conversion from an asymmetrical ciliary type to a symmetrical flagellar type when the cell is stimulated by intense light and the Ca2+ concentration within the flagellum is increased above approximately 10(-6) M. To see whether the central-pair/radial spoke system is needed for this conversion as suggested(More)
The flagellar axoneme of the mutant pf18 lacking the central pair does not beat, but undergoes a nanometer-scale, high-frequency oscillation (hyper-oscillation) in the presence of ATP [Yagi et al., 1994: Cell Motil. Cytoskeleton 29:177-185]. The present study demonstrates that the amplitude of the hyper-oscillation increases significantly in the(More)
The outer dynein arm-docking complex (ODA-DC) targets the outer dynein arm to its correct binding site on the flagellar axoneme. The Chlamydomonas ODA-DC contains three proteins; loss of any one prevents normal assembly of the outer arm, leading to a slow, jerky swimming phenotype. We showed previously that the smallest ODA-DC subunit, DC3, has four(More)
Two novel Chlamydomonas mutants, ida5 and ida6, that lack subsets of inner-arm dynein have been isolated and mapped to discrete loci on the right arm of linkage group XIV. Of the seven different inner-arm dynein subspecies (a, b, c, d, e, f and g) identified by ion-exchange chromatography, ida5 lacks a, c, d and e, while ida6 lacks e alone; these are the(More)