Toshiki Yagi

Learn More
Tubulin polyglutamylation is a modification that adds multiple glutamates to the gamma-carboxyl group of a glutamate residue in the C-terminal tails of alpha- and beta-tubulin [1, 2]. This modification has been implicated in the regulation of axonal transport and ciliary motility. However, its molecular function in cilia remains unknown. Here, using a novel(More)
Memory deduplication shares same-content memory pages and reduces the consumption of physical memory. It is effective on environments that run many virtual machines with the same operating system. Memory deduplication, however, is vulnerable to memory disclosure attacks, which reveal the existence of an application or file on another virtual machine. Such(More)
Cilia and flagella are highly conserved organelles that have diverse roles in cell motility and sensing extracellular signals. Motility defects in cilia and flagella often result in primary ciliary dyskinesia. However, the mechanisms underlying cilia formation and function, and in particular the cytoplasmic assembly of dyneins that power ciliary motility,(More)
A bacterium with high poly-γ-glutamate (PGA) productivity was isolated from the traditional Korean seasoning, Chung-Kook-Jang. This bacterium could be classified as a Bacillus subtilis, but sporulation in culture was infrequent in the absence of Mn2+. It was judged to be a variety of B. subtilis and designated B. subtilis (chungkookjang). L-Glutamate(More)
Cilia/flagella are assembled and maintained by the process of intraflagellar transport (IFT), a highly conserved mechanism involving more than 20 IFT proteins. However, the functions of individual IFT proteins are mostly unclear. To help address this issue, we focused on a putative IFT protein TTC26/DYF13. Using live imaging and biochemical approaches we(More)
The movements of cilia and flagella are driven by multiple species of dynein heavy chains (DHCs), which constitute inner- and outer-dynein arms. In Chlamydomonas, 11 DHC proteins have been identified in the axoneme, but 14 genes encoding axonemal DHCs are present in the genome. Here, we assigned each previously unassigned DHC gene to a particular DHC(More)
Understanding the molecular architecture of the flagellum is crucial to elucidate the bending mechanism produced by this complex organelle. The current known structure of the flagellum has not yet been fully correlated with the complex composition and localization of flagellar components. Using cryoelectron tomography and subtomogram averaging while(More)
The outer dynein arm-docking complex (ODA-DC) targets the outer dynein arm to its correct binding site on the flagellar axoneme. The Chlamydomonas ODA-DC contains three proteins; loss of any one prevents normal assembly of the outer arm, leading to a slow, jerky swimming phenotype. We showed previously that the smallest ODA-DC subunit, DC3, has four(More)
Dynein has four nucleotide binding sites, of which the functional significance is unknown except for the single catalytic site. To obtain clues to the function of non-catalytic nucleotide binding, we examined the effect of ADP on the in vitro motility of Chlamydomonas inner-arm dynein species 'a'. Upon continuous perfusion with ATP and ADP, microtubules(More)
Ciliary and flagellar axonemes are basically composed of nine outer doublet microtubules and several functional components, e.g. dynein arms, radial spokes, and interdoublet links. Each A-tubule of the doublet contains a specialized "ribbon" of three protofilaments composed of tubulin and other proteins postulated to specify the three-dimensional(More)