Toshiki Tajima

Learn More
In this article we present the results of particle in cell (PIC) simulations of laser plasma interaction for proton acceleration for radiation therapy treatments. We show that under optimal interaction conditions protons can be accelerated up to relativistic energies of 300 MeV by a petawatt laser field. The proton acceleration is due to the dragging(More)
A method to generate ultrahigh intense electromagnetic fields is suggested, based on the laser pulse compression, carrier frequency upshift, and focusing by a counterpropagating breaking plasma wave, relativistic flying parabolic mirror. This method allows us to achieve the quantum electrodynamics critical field (Schwinger limit) with present-day laser(More)
Table-top laser wakefield accelerators (LWFAs), proposed theoretically in 1979, have now generated individual electron bunches in the laboratory with a significant number of electrons having energies up to 10 MeV and beyond with the maximum energy reaching tens of MeV and charge per laser pulse of > 1 nC. The attained electron beam properties have(More)
In this paper we present calculations for the design of a particle selection system for laser-accelerated proton therapy. Laser-accelerated protons coming from a thin high-density foil have broad energy and angular spectra leading to dose distributions that cannot be directly used for therapeutic applications. Our solution to this problem is a compact(More)
Laser acceleration is based on the concept to marshal collective fields that may be induced by laser. In order to exceed the material breakdown field by a large factor, we employ the broken-down matter of plasma. While the generated wakefields resemble with the fields in conventional accelerators in their structure (at least qualitatively), it is their(More)
The challenge of producing the next generation of particle accelerators, for both fundamental research at laboratories such as CERN and more applied tasks such as proton therapy and nuclear transmutation, has been taken up by the high-intensity laser community. With the advent of chirped pulse amplification (CPA) in 19851 came the ability to generate(More)
We report a high-contrast, high-intensity Ti:sapphire chirped-pulse amplification system that incorporates a nonlinear preamplifier based on optical parametric chirped-pulse amplification (OPCPA). By cooling the Ti:sapphire crystal in the final amplifier down to 77 K, the chirped-pulses are amplified to 2.9 J at a 10 Hz repetition rate without a thermal(More)
Laser wakefield acceleration (LWFA) technology has evolved to where it should be evaluated for its potential as a future competitor to existing technology that produces electron and x-ray beams. The purpose of the present work is to investigate the dosimetric properties of an electron beam that should be achievable using existing LWFA technology, and to(More)
We have developed a femtosecond high-intensity laser system that combines both Ti:sapphire chirped-pulse amplification (CPA) and optical parametric CPA (OPCPA) techniques and produces more than 30 J broadband output energy, indicating the potential for achieving peak powers in excess of 500 TW. With a cleaned high-energy seeded OPCPA preamplifier as a front(More)