Learn More
Using a dialysis electrode, we recently developed an oxygen-independent system for real-time measurement of the glutamate concentration in the extracellular space ([Glu]e) during ischemia. This system allows separate evaluation of intra-ischemic biphase [Glu]e elevation, i.e. release from synaptic vesicles (1st phase), reversed uptake of glutamate from(More)
From conventional relative gene expression analyses (Northern blotting, in situ hybridization, and RT-PCR), it has been reported that the expression of control genes, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-actin, used as references may be affected by ischemia. Therefore, we extended searching and evaluation at the mRNA level of(More)
Expression of the serum/glucocorticoid regulated kinase-1 (sgk-1) gene has been reported to be induced by various stress stimuli such as hyper- or hypo-osmotic stress, UV irradiation, and heat shock stress; however, its association with global ischemia in the brain has not been studied. Using high-density oligonucleotide array analysis, we found that the(More)
Several cascades of changes in gene expression have been shown to be involved in the neuronal injury after transient cerebral ischemia; however, little is known about the profile of genes showing alteration of expression in a mouse model of transient forebrain ischemia. We analyzed the gene expression profile in the mouse hippocampus during 24 h of(More)
Mild to moderate differences in brain temperature are known to greatly affect the outcome of cerebral ischemia. The impact of brain temperature on ischemic disorders has been mainly evaluated through pathological analysis. However, no comprehensive analyses have been conducted at the gene expression level. Using a high-density oligonucleotide microarray, we(More)
Changes in glucose uptake in the gerbil hippocampus were studied by high-resolution [3H]2-deoxyglucose radioautography under sham and postischemic conditions. Sections of dorsal hippocampi were fixed by chemical fixatives or rapid-freezing and freeze-substitution techniques. Light and electron microscope radioautograms showed that the cell soma of each CA1(More)
Our newly developed method using a dialysis electrode has made it possible to perform real time monitoring of extracellular glutamate concentration ([Glu]e) utilizing the oxygen-independent reaction with glutamate oxidase and ferrocene. In this study, we therefore, investigated [Glu]e changes during brain ischemia using both the conventional microdialysis(More)
Whereas a 2-3 degrees C decrease in intraischemic brain temperature can be neuroprotective, mild brain hyperthermia significantly worsens outcome. Our previous study suggested that an ischemic injury mechanism which is sensitive to temperature may not actually increase the extracellular glutamate concentration ([Glu](e)) during the intraischemic period, but(More)
We found previously that N-(4-acetyl-1-piperazinyl)-p-fluorobenzamide monohydrate (FK960) facilitated hippocampal neurotransmission in the dentate gyrus of rat hippocampal slices. The present study was conducted to understand the mechanism underlying the facilitatory action of FK960. The facilitation was inhibited by H-89, an inhibitor of cAMP-dependent(More)
Little is known about the effect of salivary gland function during aging based on gene expression. Recently emerged DNA array technology provides a sensitive, quantitative, rapid approach to the monitoring of the global pattern of gene expression. In this study, we used high-density oligonucleotide arrays to monitor the changes of gene expression levels in(More)