Learn More
UDP-sugars, activated forms of monosaccharides, are synthesized through de novo and salvage pathways and serve as substrates for the synthesis of polysaccharides, glycolipids, and glycoproteins in higher plants. A UDP-sugar pyrophosphorylase, designated PsUSP, was purified about 1,200-fold from pea (Pisum sativum L.) sprouts by conventional chromatography.(More)
Floral transition should be strictly regulated because it is one of the most critical developmental processes in plants. Arabidopsis terminal flower 2 (tfl2) mutants show an early-flowering phenotype that is relatively insensitive to photoperiod, as well as several other pleiotropic phenotypes. We found that the early flowering of tfl2 is caused mainly by(More)
A basic beta-galactosidase with high specificity toward beta-(1-->3)- and beta-(1-->6)-galactosyl residues was cloned from radish (Raphanus sativus) plants by reverse transcription-PCR. The gene, designated RsBGAL1, contained an open reading frame consisting of 2,532 bp (851 amino acids). It is expressed in hypocotyls and young leaves. RsBGAL1 was highly(More)
Arabinogalactan proteins (AGPs) are a complex family of cell-wall proteoglycans that are thought to play major roles in plant growth and development. Genetic approaches to studying AGP function have met limited success so far, presumably due to redundancy within the large gene families encoding AGP backbones. Here we used an alternative approach for genetic(More)
UDP-sugar pyrophosphorylase catalyzes the conversion of various monosaccharide 1-phosphates to the respective UDP-sugars in the salvage pathway. Using the genomic database, we cloned a putative gene for UDP-sugar pyrophosphorylase from Arabidopsis. Although relatively stronger expression was detected in the vascular tissue of leaves and the pollen, AtUSP is(More)
The water-extractable arabinogalactan protein (AGP) was isolated from bread wheat flour (Triticum aestivum L. variety Cadenza) and the structure of the arabinogalactan (AG) carbohydrate component was studied. Oligosaccharides, released by hydrolysis of the AG with a range of AGP-specific enzymes, were characterised by Matrix Assisted Laser Desorption(More)
Several brittle culm (bc) mutants known in grasses are considered excellent materials to study the process of secondary cell wall formation. The brittle phenotype of the rice bc5 (brittle node) mutant appears exclusively in the developed nodes, which is distinct from other bc mutants (bc1, 2, 3, 4, 6 and 7) that show the brittle phenotype in culms and(More)
We have characterized a β-glucuronosyltransferase (AtGlcAT14A) from Arabidopsis thaliana that is involved in the biosynthesis of type II arabinogalactan (AG). This enzyme belongs to the Carbohydrate Active Enzyme database glycosyltransferase family 14 (GT14). The protein was localized to the Golgi apparatus when transiently expressed in Nicotiana(More)
Proteins decorated with arabinogalactan (AG) have important roles in cell wall structure and plant development, yet the structure and biosynthesis of this polysaccharide are poorly understood. To facilitate the analysis of biosynthetic mutants, water-extractable arabinogalactan proteins (AGPs) were isolated from the leaves of Arabidopsis (Arabidopsis(More)
The putative endo-beta-1,6-galactanase gene from Streptomyces avermitilis was cloned and expressed in Escherichia coli, and the enzymatic properties of the recombinant enzyme were characterized. The gene consisted of a 1,476-bp open reading frame and encoded a 491-amino-acid protein, comprising an N-terminal secretion signal sequence and glycoside hydrolase(More)