Learn More
Malaria parasites within red blood cells digest host hemoglobin into a hydrophobic heme polymer, known as hemozoin (HZ), which is subsequently released into the blood stream and then captured by and concentrated in the reticulo-endothelial system. Accumulating evidence suggests that HZ is immunologically active, but the molecular mechanism(s) through which(More)
Toll-like receptors (TLRs) recognize malaria parasites or their metabolites; however, their physiological roles in malaria infection in vivo are not fully understood. Here, we show that myeloid differentiation primary response gene 88 (MyD88)-dependent TLR signaling mediates brain pathogenesis of severe malaria infection, namely cerebral malaria (CM). A(More)
The Plasmodium falciparum serine repeat antigen (SERA) is one of the blood stage malaria vaccine candidates. The malaria genome project has revealed that SERA is a member of the SERA multigene family consisting of eight SERA homologues clustered on chromosome 2 and one SERA homologue on chromosome 9. Northern blotting and real time quantitative reverse(More)
The Plasmodium falciparum serine repeat antigen (SERA), a malaria vaccine candidate, is processed into several fragments (P73, P47, P56, P50, and P18) at the late schizont stage prior to schizont rupture in the erythrocytic cycle of the parasite. We have established an in vitro cell-free system using a baculovirus-expressed recombinant SERA (bvSERA) that(More)
The serine repeat antigen (SERA) of Plasmodium falciparum is a blood stage malaria vaccine candidate. It has been shown that 120 kDa SERA was proteolytically processed into N-terminal 47 kDa fragment (P47), central 56 kDa fragment (P56) that was further converted to 50 kDa (P50), and C-terminal 18 kDa fragment (P18). Here, we have examined the processing of(More)
The complete nucleotide sequences of the 1.5 kb regions of ColE2 and ColE3 plasmids containing the segments sufficient for autonomous replication have been determined. They are quite homologous (greater than 90%), indicating that these two plasmids share common mechanisms of initiation of replication and its regulation. An open reading frame with a coding(More)
Apicomplexan parasites of the genus Plasmodium, pathogens causing malaria, and the genera Babesia and Theileria, aetiological agents of piroplasmosis, are closely related. However, their mitochondrial (mt) genome structures are highly divergent: Plasmodium has a concatemer of 6-kb unit and Babesia/Theileria a monomer of 6.6- to 8.2-kb with terminal inverted(More)
Sphingomyelinase (SMase) is one of the principal enzymes in sphingomyelin (SM) metabolism. Here, we identified a Plasmodium falciparum gene (PfNSM) encoding a 46-kD protein, the amino acid sequence of which is approximately 25% identical to that of bacteria SMases. Biochemical analyses of the recombinant protein GST-PfNSM, a fusion protein of the PfNSM(More)
Malaria parasites (genus Plasmodium) infect all classes of terrestrial vertebrates and display host specificity in their infections. It is therefore assumed that malaria parasites coevolved intimately with their hosts. Here, we propose a novel scenario of malaria parasite-host coevolution. A phylogenetic tree constructed using the malaria parasite(More)
Cerebral malaria is the most severe complication of Plasmodium falciparum infection in humans and the pathogenesis is still unclear. Using the P. berghei ANKA infection model of mice, we investigated a potential involvement of Nlrp3 and the inflammasome in the pathogenesis of cerebral malaria. Nlrp3 mRNA expression was upregulated in brain endothelial cells(More)