Learn More
Human embryonic stem cells (hESCs), unlike mouse ones (mESCs), are vulnerable to apoptosis upon dissociation. Here, we show that the apoptosis, which is of a nonanoikis type, is caused by ROCK-dependent hyperactivation of actomyosin and efficiently suppressed by the myosin inhibitor Blebbistatin. The actomyosin hyperactivation is triggered by the loss of(More)
On the basis of the glutamatergic dysfunction hypothesis of schizophrenia, we have been conducting a systematic study of the association of glutamate receptor genes with schizophrenia. Here we report association studies of schizophrenia with polymorphisms in three kainate receptor genes: GRIK3, GRIK4 and GRIK5. We selected 16, 24 and 5 common single(More)
Somites, blocks of mesoderm tissue located on either side of the neural tube in the developing vertebrate embryo, are derived from mesenchymal cells in the presomitic mesoderm (PSM) and are a defining characteristic of vertebrates. In vertebrates, the somite segmental boundary is determined by Notch signalling and the antagonistic relationship of the(More)
In Xenopus, an asymmetric distribution of Wnt activity that follows cortical rotation in the fertilized egg leads to the dorsal-ventral (DV) axis establishment. However, how a clear DV polarity develops from the initial difference in Wnt activity still remains elusive. We report here that the Teashirt-class Zn-finger factor XTsh3 plays an essential role in(More)
During embryogenesis, bone morphogenetic protein (BMP) signaling needs to be finely tuned in a locally restricted manner. Here, we report a cell-intrinsic mode of BMP response control executed by the membrane protein Jiraiya. In the Xenopus embryo, zygotic Jiraiya, expressed exclusively in the neuroectoderm, is essential and sufficient for limiting dorsal(More)
Fast excitatory transmission in the mammalian central nervous system is mediated by AMPA-type glutamate receptors. The tetrameric AMPA receptor complexes are composed of four subunits, GluR1-4. The GluR4 subunit is highly expressed in the cerebellum and the early postnatal hippocampus and is thought to be involved in synaptic plasticity and the development(More)
The zebrafish has a striped skin pattern on its body, and Connexin41.8 (Cx41.8) and Cx39.4 are involved in striped pattern formation. Mutations in these connexins change the striped pattern to a spot or labyrinth pattern. In this study, we characterized Cx41.8 and Cx39.4 after expression in Xenopus oocytes. In addition, we analyzed Cx41.8 mutants(More)
The anthropogenic radionuclides, (90)Sr, (137)Cs and (239+240)Pu, were measured in the water column of the Japan Sea/East Sea during 1997-2000. The vertical profiles of radionuclide concentrations showed: exponential decrease with depth for (90)Sr and (137)Cs, and surface minimum/subsurface maximum for (239+240)Pu. These results do not differ substantially(More)
Fish remain nearly the same shape as they grow, but there are two different modes of bone growth. Bones in the tail fin (fin ray segments) are added distally at the tips of the fins and do not elongate once produced. On the other hand, vertebrae enlarge in proportion to body growth. To elucidate how bone growth is controlled, we investigated a zebrafish(More)
The vertebrate head is characterized by unsegmented head mesoderm the evolutionary origin of which remains enigmatic. The head mesoderm is derived from the rostral part of the dorsal mesoderm, which is regionalized anteroposteriorly during gastrulation. The basal chordate amphioxus resembles vertebrates due to the presence of somites, but it lacks(More)