Toshihiko Noda

Learn More
In this review, the concept, design, performance, and a functional demonstration of multifunctional complementary metal-oxide-semiconductor (CMOS) image sensors dedicated to on-chip biosensing applications are described. We developed a sensor architecture that allows flexible configuration of a sensing pixel array consisting of optical and electric sensing(More)
A complementary metal-oxide semiconductor (CMOS)-based multichip flexible neural stimulator for retinal prostheses was developed. The multichip retinal stimulator is capable of simultaneous multisite stimulation. An on-chip stimulation generator was implemented on the "unit chip," which is the core device of the multichip retinal stimulator. The performance(More)
Techniques for fast, noninvasive measurement of neuronal excitability within a broad area will be of major importance for analyzing and understanding neuronal networks and animal behavior in neuroscience field. In this research, a novel implantable imaging system for fluorescence potentiometry was developed using a complementary metal-oxide semiconductor(More)
Measurement of brain activity in multiple areas simultaneously by minimally invasive methods contributes to the study of neuroscience and development of brain machine interfaces. However, this requires compact wearable instruments that do not inhibit natural movements. Application of optical potentiometry with voltage-sensitive fluorescent dye using an(More)
A CMOS image sensor-based implantable glucose sensor based on an optical-sensing scheme is proposed and experimentally verified. A glucose-responsive fluorescent hydrogel is used as the mediator in the measurement scheme. The wired implantable glucose sensor was realized by integrating a CMOS image sensor, hydrogel, UV light emitting diodes, and an optical(More)
We demonstrate wireless image data transmission through a mouse brain. The transmission characteristics of mouse brain is measured. By inserting electrodes into the brain, the transmission efficiency is drastically increased. An AM signal modulated with the image data from an implantable image sensor was launched into the brain and the received signal was(More)
We developed a complementary metal oxide semiconductor (CMOS) integrated device for optogenetic applications. This device can interface via neuronal tissue with three functional modalities: imaging, optical stimulation and electrical recording. The CMOS image sensor was fabricated on 0.35 μm standard CMOS process with built-in control circuits for an(More)
We have developed a retinal prosthetic device based on CMOS technology for STS, suprachoroidal transretinal stimulation method. Introducing CMOS technology makes it easy to realize large numbers of stimulus electrodes without increasing numbers of lead wires. We designed a micro CMOS chip integrating with stimulus current generation, decoding and(More)
We propose a media converter framework which takes images, music, and other media as input and outputs different media while preserving the same impression for humans. The media converter is realized by combining multiple media database (DB) retrieval systems that use a common psychological impression space. Each of the media DB retrieval systems consists(More)