Learn More
During animal development, cells become progressively more restricted in the cell types to which they can give rise. In the central nervous system (CNS), for example, multipotential stem cells produce various kinds of specified precursors that divide a limited number of times before they terminally differentiate into either neurons or glial cells. We show(More)
An intracellular timer in oligodendrocyte precursor cells is thought to help control the timing of their differentiation. We show here that the expression of the Hes5 and Mash1 genes, which encode neural-specific bHLH proteins, decrease and increase, respectively, in these cells with a time course expected if the proteins are part of the timer. We show that(More)
During animal development many cells permanently stop dividing and terminally differentiate. For the most part, the mechanisms that control when the cells exit the cell cycle and differentiate are not known. We have been studying the mechanisms in the oligodendrocyte cell lineage. Studies of oligodendrocyte precursor cells (OPCs) in culture suggest that(More)
Action mechanism of lipopolysaccharide (LPS), interleukin-1β (IL-1β), and lysophosphatidic acid (LPA) to regulate motility, an important process of astrogliosis, was investigated in rat astrocytes. While LPA exerted no significant effect on the cell migration, the prior treatment of the cells with LPS or IL-1β resulted in the appearance of migration(More)
The Internet of Things (IoT) is opening the doors to many new devices and applications. Such an increase in the variety of applications requires reconfigurable, flexible and expandable hardware for fabrication and development cost reduction. This has been achieved for the digital part with devices like Arduino. However, the sensor readout Analog-Front-End(More)
A highly integrated array processor (AAP2)-LSI has been developed. After the past 3 years study on the adaptive array processor 1 (AAP1), a challenging improvements on the SIMD's restraints are achieved by using the AAP2-LSI. The AAP2 array system makes it possible to carry out wideband modifiable operation (pseudo MIMD). Furthermore, each PE is capable of(More)
  • 1