Learn More
The NMDA (N-methyl-D-aspartate) receptor channel is important for synaptic plasticity, which is thought to underlie learning, memory and development. The NMDA receptor channel is formed by at least two members of the glutamate receptor (GluR) channel subunit families, the GluR epsilon (NR2) and GluR zeta (NR1) subunit families. The four epsilon subunits are(More)
Myelin is the lipoprotein multimembrane that functions as an insulator preventing the flow of ion currents across the axonal membrane and facilitating the conduction of nerve impulses. It is synthesized by oligodendrocytes in the central nervous system at about the time of birth in mammals. During the initial stages of myelination, several proteins are(More)
In producing mutant mice by gene-targeting and gene-trapping in embryonic stem (ES) cells, the efficient colonization of the mutant ES cells into germline is still a critical matter. We have established a new line of ES cells, TT2, from an F1 embryo between a C57BL/6 female and a CBA male. When the TT2 cells were injected into blastocysts, the colonization(More)
Neuropilin-1 is a membrane protein that is expressed in developing neurons and functions as a receptor or a component of the receptor complex for the class 3 semaphorins, which are inhibitory axon guidance signals. Targeted inactivation of the neuropilin-1 gene in mice induced disorganization of the pathway and projection of nerve fibers, suggesting that(More)
In producing mutant mice by gene targeting in embryonic stem (ES) cells, the efficient isolation of the homologous recombinants is still a critical step. We previously reported on a negative selection using the diphtheria toxin A (DT-A) fragment gene for homologous recombinants (1). It was efficient but limited to gene loci expressed in ES cells. For wider(More)
In attempting to produce a mutant mouse with embryonic stem cells, the critical step is the efficient isolation of homologous recombinants; the frequency of the homologous recombination is usually low and the potency of the cells to differentiate into germ cells is unstable in culture. Here, we report an efficacious method for such isolation in which the(More)
Telencephalin (TLCN) is a cell adhesion molecule selectively expressed in the telencephalon of the mammalian brain. The mutant mice lacking TLCN had no detectable abnormalities in their neural development and synaptic structures. Ablation of TLCN increased the hippocampal long-term potentiation and its saturation level. The TLCN mutation selectively(More)
Tenascin, an extracellular matrix protein, is expressed in an unusually restricted pattern during embryogenesis and has been implicated in a variety of morphogenetic phenomena. To directly assess the function of tenascin in vivo, we generated mutant mice in which the tenascin gene was nully disrupted by replacing it with the lacZ gene. In mutant mice, lacZ(More)
Animals vary in their sensitivity to ethanol, a trait at least partly determined by genetic factors. In order to identify possible responsible genes, mice lacking Fyn, a non-receptor type tyrosine kinase, were investigated. These mice were hypersensitive to the hypnotic effect of ethanol. The administration of ethanol enhanced tyrosine phosphorylation of(More)
In an attempt to examine the functional significance of the molecular diversity of the N-methyl-D-aspartate (NMDA) receptor channel, we generated mutant mice defective in the epsilon 4 subunit by gene targeting technique. The epsilon 4 subunit mutant mice grew and mated normally. No epsilon 4 subunit protein was detected in the homozygous mutant mice, and(More)