Toshiaki Ohta

Learn More
Low electrical efficiency for the lithium-oxygen (Li-O2) electrochemical reaction is one of the most significant challenges in current nonaqueous Li-O2 batteries. Here we present ruthenium oxide nanoparticles (RuO2 NPs) dispersed on multiwalled carbon nanotubes (CNTs) as a cathode, which dramatically increase the electrical efficiency up to 73%. We(More)
Silicon nanomaterials are encouraging candidates for application to photonic, electronic, or biosensing devices, due to their size-quantization effects. Two-dimensional silicon nanosheets could help to realize a widespread quantum field, because of their nanoscale thickness and microscale area. However, there has been no example of a successful synthesis of(More)
Alkyl-modified crystalline silicon nanosheets 2 were synthesized and maintained the crystal structure of a Si(111) plane, in which the dangling silicon bond is stabilized by capping with the alkyl group. 2 was characterized using UV-vis, Fourier transform-infrared, and X-ray photoelectron spectroscopies; X-ray diffraction; and X-ray absorption near edge(More)
Further increase in energy density of lithium batteries is needed for zero emission vehicles. However, energy density is restricted by unavoidable theoretical limits for positive electrodes used in commercial applications. One possibility towards energy densities exceeding these limits is to utilize anion (oxide ion) redox, instead of classical transition(More)
Cobalt hydroxide nanoplatelets with a uniform hexagonal shape were prepared in high yield ( approximately 95%) by a facile hydrothermal route in the presence of poly(vinylpyrrolidone). This method provides a simple, low-cost, and large-scale route to produce beta-cobalt hydroxide nanoplatelets with an average diameter of 280 nm and a thickness of ca. 26 nm(More)
A mid-infrared free-electron laser (FEL) is a linearly polarized, high-peak powered pulse laser with tunable wavelength within the mid-infrared absorption region. It was recently found that pathogenic amyloid fibrils could be partially dissociated to the monomer form by the irradiation of the FEL targeting the amide I band (C=O stretching vibration), amide(More)
We studied the mechanism of CO oxidation on O-precovered Pd(111) surfaces by means of fast x-ray photoelectron spectroscopy (XPS). The oxygen overlayer is compressed upon CO coadsorption from a p(2 x 2) structure into a (square root(3) x square root(3))R30 degrees structure and then into a p(2 x 1) structure with increasing CO coverage. These three O phases(More)
The application of conventional solid polymer electrolyte (SPE) to lithium-oxygen (Li-O2) batteries has suffered from a limited active reaction zone due to thick SPE and subsequent lack of O2 gas diffusion route in the positive electrode. Here we present a new design for a three-dimensional (3-D) SPE structure, incorporating a carbon nanotube (CNT)(More)
In lithium-oxygen (Li-O2) batteries, it is believed that lithium peroxide (Li2O2) electrochemically forms thin films with thicknesses less than 10 nm resulting in capacity restrictions due to limitations in charge transport. Here we show unexpected Li2O2 film growth with thicknesses of ∼60 nm on a three-dimensional carbon nanotube (CNT) electrode(More)
Experience in early life can affect the development of the nervous system. There is now evidence that experience-dependent plasticity exists in adult insects. To uncover the molecular basis of plasticity, an invertebrate model, such as Drosophila melanogaster, is a powerful tool, as many established genetic and molecular methods can be applied. To establish(More)