Toshiaki Katada

Learn More
  • T Katada, M Ui
  • Proceedings of the National Academy of Sciences…
  • 1982
GTP and isoproterenol activation of adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC] in washed membranes prepared from C6 gliomas cells was enhanced by incubation with islet-activating protein, one of the pertussis toxins, if the incubation mixture was supplemented with NAD and ATP. The action of the protein was observed immediately after(More)
Leucine-rich repeat kinase 2 (LRRK2), a product of a causative gene for the autosomal-dominant form of familial Parkinson's disease (PARK8), harbors a Ras-like small GTP binding protein-like (ROC) domain besides the kinase domain, although the relationship between these two functional domains remains elusive. Here we show by thin-layer chromatographic(More)
Two cytoplasmic mRNA-decay pathways have been characterized in yeast, and both are initiated by shortening of the 3'-poly(A) tail. In the major 5'-to-3' decay pathway, the deadenylation triggers removal of the 5'-cap, exposing the transcript body for 5'-to-3' degradation. An alternative 3'-to-5' decay pathway also follows the deadenylation and requires two(More)
The small ciliary G protein Arl13b is required for cilium biogenesis and sonic hedgehog signaling and is mutated in patients with Joubert syndrome (JS). In this study, using Caenorhabditis elegans and mammalian cell culture systems, we investigated the poorly understood ciliary and molecular basis of Arl13b function. First, we show that Arl13b/ARL-13(More)
The poly(A) tail shortening in mRNA, called deadenylation, is the first rate-limiting step in eukaryotic mRNA turnover, and the polyadenylate-binding protein (PABP) appears to be involved in the regulation of this step. However, the precise role of PABP remains largely unknown in higher eukaryotes. Here we identified and characterized a human PABP-dependent(More)
To determine whether G proteins activate cardiac ATP-sensitive K+ (KATP) channels by regulating intracellular ATP (ATPi)-dependent gating, currents were measured in inside-out patches. When ATPi closed KATP channels, activators of endogenous G proteins, GTP (plus adenosine or acetylcholine), GTP gamma S, or AlF-4 stimulated channels, an effect prevented by(More)
The small GTPase Rab5, which cycles between active (GTP-bound) and inactive (GDP-bound) states, plays essential roles in membrane budding and trafficking in the early endocytic pathway. However, the molecular mechanisms underlying the Rab5-regulated processes are not fully understood other than the targeting event to early endosomes. Here, we report a novel(More)
In eukaryotes, shortening of the 3'-poly(A) tail is the rate-limiting step in the degradation of most mRNAs, and two major mRNA deadenylase complexes--Caf1-Ccr4 and Pan2-Pan3--play central roles in this process, referred to as deadenylation. However, the molecular mechanism triggering deadenylation remains elusive. Previously, we demonstrated that(More)
Exposure of NG108-15 hybrid cells to islet-activating protein (IAP), pertussis toxin, caused strong ADP-ribosylation of one of the membrane proteins with a molecular weight of 41,000. This ADP-ribosylation was paralleled by decreases in the inhibition of cAMP accumulation in intact cells or associated with reversal of the inhibition of GTP-dependent(More)
Intracellular Ca2+ mobilization occurs in a variety of cellular processes and is mediated by two major systems, the inositol 1,4, 5-trisphosphate (IP3) and cyclic ADP-ribose (cADPR) systems. cADPR has been proposed to be a second messenger for insulin secretion induced by glucose in pancreatic beta-cells (Takasawa, S., Nata, K., Yonekura, H., and Okamoto,(More)