Learn More
To be able to function as a probiotic, bacteria have to survive the passage through the gastrointestinal tract. We have examined survival and gene expression of Lactobacillus reuteri ATCC 55730 after a sudden shift in environmental acidity to a pH close to the conditions in the human stomach. More than 80% of the L. reuteri cells survived at pH 2.7 for 1 h.(More)
Extracellular and transmembrane proteins are important for the binding of bacteria to intestinal surfaces and for their interaction with the host. The aim of this study was to identify genes encoding extracellular and transmembrane proteins from the probiotic bacterium Lactobacillus reuteri by construction and screening of a phage display library. This(More)
PHB(polyP) complexes bind calcium and form calcium channels in the cytoplasmic membrane in Escherichia coli and are likely to be important in Ca(2+) homeostasis in this organism. E. coli N43, which lacks the AcrA component of a major multidrug resistance pump, was shown to be defective in calcium handling, with an inability to maintain submicromolar levels(More)
Bioinformatical analyses of a draft genome sequence of the commensal bacterium Lactobacillus reuteri ATCC 55730 revealed 126 genes encoding putative extracellular proteins. The function, localization and distribution in bacterial species were predicted. Interestingly, few proteins possessed LPXTG motifs or C-terminal transmembrane anchors. Instead eight(More)
Wall, T. 2005. Environmental Interactions of Lactobacillus reuteri – Signal Transduction, Gene Expression and Extracellular Proteins of a Lactic Acid Bacterium. Doctoral dissertation. ISSN 1652-6880, ISBN 91-576-6903-1 The commensal bacterium Lactobacillus reuteri inhabits the human gastrointestinal tract and possesses putative probiotic, i.e.(More)
  • 1