Torun Margareta Melø

Learn More
Cerebral hyperammonemia is believed to play a pivotal role in the development of hepatic encephalopathy (HE), a debilitating condition arising due to acute or chronic liver disease. In the brain, ammonia is thought to be detoxified via the activity of glutamine synthetase, an astrocytic enzyme. Moreover, it has been suggested that cerebral tricarboxylic(More)
Glucose is the preferred energy substrate for the adult brain. However, during periods of fasting and consumption of a high fat, low carbohydrate (ketogenic) diet, ketone bodies become major brain fuels. The present study was conducted to investigate how the ketogenic diet influences neuronal-glial interactions in amino acid neurotransmitter metabolism.(More)
The aim of the present work was to study potential disturbances in metabolism and interactions between neurons and glia in the lithium-pilocarpine model of temporal lobe epilepsy. Rats chronically epileptic for 1 month received [1-(13)C]glucose, a substrate for neurons and astrocytes, and [1,2-(13)C]acetate, a substrate for astrocytes only. Analyses of(More)
Disturbances in GABAergic and glutamatergic neurotransmission in the thalamocortical loop are involved in absence seizures. Here, we examined potential disturbances in metabolism and interactions between neurons and glia in 5-month-old genetic absence epilepsy rats from Strasbourg (GAERS) and nonepileptic rats (NER). Animals received [1-(13)C]glucose and(More)
This study was undertaken to determine if the ketogenic diet could be useful for glioblastoma patients. The hypothesis tested was whether glioblastoma cells can metabolize ketone bodies. Cerebellar astrocytes and C6 glioblastoma cells were incubated in glutamine and serum free medium containing [2,4-(13)C]β-hydroxybutyrate (BHB) with and without glucose.(More)
Neuronal-astrocytic interactions in 1-month-old Genetic Absence Epilepsy Rats from Strasbourg (GAERS) before the occurrence of seizures are compared to those in non-epileptic rats (NERs) and in adult GAERS expressing epilepsy. Animals received [1-13C]glucose and [1,2-13C]acetate, preferential substrates of neurons and astrocytes, respectively, and extracts(More)
We investigated metabolite levels during the progression of pathology in McGill-R-Thy1-APP rats, a transgenic animal model of Alzheimer's disease, and in healthy age-matched controls. Rats were subjected to in vivo (1) H magnetic resonance spectroscopy (MRS) of the dorsal hippocampus at age 3, 9 and 12 months and of frontal cortex at 9 and 12 months. At 3(More)
Hippocampal excitability and the metabolic glial-neuronal interactions were investigated in 22-week-old mice with motor neuron degeneration (mnd), a model of progressive epilepsy with mental retardation. Mnd mice developed spontaneous spikes in the hippocampus and were more susceptible to kainate-induced seizures compared with control mice. Neuronal(More)
Glutamate metabolism was studied in co-cultures of mouse cerebellar neurons (predominantly glutamatergic) and astrocytes. One set of cultures was superfused (90 min) in the presence of either [U-(13)C]glucose (2.5 mM) and lactate (1 mM) or [U-(13)C]lactate (1 mM) and glucose (2.5 mM). Other sets of cultures were incubated in medium containing(More)
Evaluating early changes in cerebral metabolism in hydrocephalus can help in the decision making and the timing of surgical intervention. This study was aimed at examining the tricarboxylic acid (TCA) cycle rate and (13)C label incorporation into neurotransmitter amino acids and other compounds 2 weeks after rats were subjected to kaolin-induced progressive(More)